
 
 

NAVAL 
POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 
 
 

 
DISSERTATION 

Approved for public release; distribution is unlimited. 

 

CHANCE-CONSTRAINED MISSILE-PROCUREMENT 
AND DEPLOYMENT MODELS FOR NAVAL SURFACE 

WARFARE 
 

by 
 

Ittai Avital 
 

March 2005 
 
 

  
Dissertation Supervisors:        R. Kevin Wood 
         Moshe Kress 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 i 

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including 
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and 
completing and reviewing the collection of information. Send comments regarding this burden estimate or any 
other aspect of this collection of information, including suggestions for reducing this burden, to Washington 
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 
(0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
March 2005 

3. REPORT TYPE AND DATES COVERED 
Dissertation 

  4. TITLE AND SUBTITLE:  Chance-Constrained Missile-Procurement and 
   Deployment Models for Naval Surface Warfare  

6. AUTHOR   Ittai Avital 

5. FUNDING NUMBERS 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
      AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the Department of Defense or the U.S. Government. 

12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 
 

13. ABSTRACT  
We model the problem of minimum-cost procurement and allocation of anti-ship cruise missiles to naval 

combat ships as a two-period chance-constrained program with recourse.  Discrete scenarios in two periods define 
“demands” for missiles (i.e., targets and number of missiles required to kill those targets), which must be met with 
acceptable probabilities.  After the first combat period, ships may replenish their inventories from a depot, if the 
depot’s inventory suffices.  A force commander assigns targets to ships based on missile load-outs and target 
demands. 

The deterministic-equivalent integer program solves too slowly for practical use.  We propose a 
specialized decomposition algorithm, implemented in MATLAB, which solves the two-period model via a series 
of single-period problems.  The algorithm yields optimal solutions for a wide range of missile-allocation 
directives, and usually near-optimal solutions otherwise.  We exploit the fact that each single-period problem is a 
probabilistic integer program, whose solution must be a p-efficient point (PEP) of that period’s demand 
distribution.  Our algorithm uses PEP-enumeration techniques developed by Beraldi and Ruszczyński, and a 
specialized algorithm from Kress, Penn and Polukarov.  The algorithm solves real-world problem instances in a 
few minutes or less. 

 
15. NUMBER OF 
PAGES  

147 

14. SUBJECT TERMS   
Inventory Models,  Target Assignment,  Stochastic Programming,  Probabilistic Programming 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 

 
UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii 

Approved for public release; distribution is unlimited. 
 
 

CHANCE-CONSTRAINED MISSILE-PROCUREMENT AND DEPLOYMENT 
MODELS FOR NAVAL SURFACE WARFARE 

 
Ittai Avital 

B.S., Hebrew University of Jerusalem, 1995 
M.Sc., Tel Aviv University, 2002 

M.Sc., National University of Singapore, 2004 
M.Sc., Naval Postgraduate School, 2004 

 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

DOCTOR OF PHILOSOPHY IN OPERATIONS RESEARCH 
 

from the 
 

NAVAL POSTGRADUATE SCHOOL 
March 2005 

 
Author: __________________________________________________ 

Ittai Avital 
Approved by:  

______________________ _______________________ 
R. Kevin Wood Moshe Kress 
Professor of Operations Research Professor of Operations 
Dissertation Supervisor Research 
Committee Chairman  Dissertation Supervisor 
  
______________________ _______________________ 
Guillermo Owen Javier Salmeron 
Distinguished. Professor of  Research Assistant Professor 
Mathematics of Operations Research 
   
______________________ 
Wayne P. Hughes  
Dean, Graduate School of Operational and Information Sciences  

 
Approved by: __________________________________________________ 

          James Eagle, Chairman, Department of Operations Research 
 

Approved by: __________________________________________________ 
Julie Filizetti, Associate Provost for Academic Affairs 



 iv 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 v 

ABSTRACT 
 
 
We model the problem of minimum-cost procurement and allocation of anti-ship 

cruise missiles to naval combat ships as a two-period chance-constrained program with 

recourse.  Discrete scenarios in two periods define “demands” for missiles (i.e., targets 

and number of missiles required to kill those targets), which must be met with acceptable 

probabilities.  After the first combat period, ships may replenish their inventories from a 

depot, if the depot’s inventory suffices.  A force commander assigns targets to ships 

based on missile load-outs and target demands. 

The deterministic-equivalent integer program solves too slowly for practical use.  

We propose a specialized decomposition algorithm, implemented in MATLAB, which 

solves the two-period model via a series of single-period problems.  The algorithm yields 

optimal solutions for a wide range of missile-allocation directives, and usually near-

optimal solutions otherwise.  We exploit the fact that each single-period problem is a 

probabilistic integer program, whose solution must be a p-efficient point (PEP) of that 

period’s demand distribution.  Our algorithm uses PEP-enumeration techniques 

developed by Beraldi and Ruszczyński, and a specialized algorithm from Kress, Penn and 

Polukarov.  The algorithm solves real-world problem instances in a few minutes or less. 

 

 

 

 

 

 

 



 vi 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



 vii 

TABLE OF CONTENTS 
 
 

I. INTRODUCTION........................................................................................................1 
A. A GENERAL SUPPLY-CHAIN FRAMEWORK FOR COMBAT 

UNITS ...............................................................................................................1 
B. CHANCE-CONSTRAINED PROGRAMMING..........................................3 
C. INITIAL FORMULATIONS..........................................................................6 
D. DISSERTATION OUTLINE..........................................................................9 

II. MATHEMATICAL MODELS.................................................................................11 
A. CHANCE-CONSTRAINED MODELS FOR NAVAL WARFARE.........11 

1.  CCNIM for a Single Period...............................................................11 
2.  CCNIM................................................................................................14 

B. INTEGER PROGRAMING MODELS .......................................................19 
1. RFFAM Specification ........................................................................19 
2. RFFAM Mathematical Description..................................................21 
3. Explanation of the Specialized Constraints.....................................25 

a. Operational-Assignment and Symmetry-Breaking 
Constraints ..............................................................................25 

b. Aggregate-Allocation Valid Inequalities................................27 
c. Single-Ship Valid Inequalities................................................28 

C. SUMMARY OF COMPUTATIONAL BEHAVIOR .................................30 
D. CONCLUSIONS ............................................................................................32 

III. THE MONOTONIC ASSIGNMENT POLICY......................................................33 
A. OPERATIONAL PROPERTIES OF THE MAP .......................................33 
B. OPTIMAL SOLUTION TO CCNIM-sp .....................................................37 
C. CCNIM-MAP .................................................................................................43 

IV. IDENTIFYING OPTIMAL SOLUTIONS..............................................................47 
A. STRUCTURE.................................................................................................47 
B. EXAMPLE OF RFFAM-BASED TECHNIQUES .....................................57 

V. SPECIALIZED ALGORITHMS FOR CCNIM-MAP ..........................................61 
A. DECOMPOSITION.......................................................................................61 
B.  ALGORITHM................................................................................................67 
C. COMPUTATIONAL RESULTS..................................................................73 

1. Comparison with RFFAM ................................................................73 
2. Period-I Solution Times.....................................................................74 
3. Period-II Solution Times ...................................................................80 
4. CCNIM-dc Solution Times ...............................................................84 
5. CCNIM-dc Optimality Gaps.............................................................85 

D. CONCLUSIONS ............................................................................................86 

VI. CONCLUSIONS AND RECOMMENDATIONS...................................................87 
A. CONCLUSIONS ............................................................................................87 
B. FUTURE WORK...........................................................................................88 



 viii 

LIST OF REFERENCES......................................................................................................91 

APPENDIX A – FFAM .........................................................................................................95 
A. FFAM SPECIFICATION .............................................................................95 
B. FFAM MATHEMATICAL DESCRIPTION..............................................96 

APPENDIX B – SINGLE-PERIOD MIPS ........................................................................101 
A. RFFAM-sp ....................................................................................................102 
B. RFFAM-spII.................................................................................................103 

APPENDIX C – CASE SPECIFICATIONS .....................................................................105 

APPENDIX D – CCNIM-e ALGORITHM .......................................................................107 

APPENDIX E – CCNIM-dc ALGORITHM .....................................................................111 

INITIAL DISTRIBUTION LIST.......................................................................................125 



 ix 

LIST OF FIGURES 
 
 
 

Figure 1. Schematic Missile Flow in a Compound Scenario for Three Ships. ...............16 
Figure 2. A Map of ( )O F  for Case 4b in Table 3. ..........................................................55 

Figure 3. Period-I PEP enumeration Versus Number of Ships. ......................................76 
Figure 4. Period-I PEP enumeration Versus Number of Scenarios. ...............................78 
Figure 5. PEP Lower Bound Level Compared with Maximum Level. ...........................79 
Figure 6. Period-I PEP Enumeration Versus Success Probability. .................................80 
Figure 7. Depot Inventory Calculation: Time Versus Number of Ships.........................81 
Figure 8. Depot Inventory Calculation Time Versus Number of Scenarios. ..................83 
Figure 9. Depot Inventory Calculation Time Versus Probability Threshold. .................84 
Figure 10. Distribution of CCNIM-dc Solution Times. ...................................................85 

 
 
 
 
 
 
 



 x 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xi 

LIST OF TABLES 
 
 
 

Table 1. Comparison of FFAM and RFFAM Computation Times. .............................31 
Table 2. Case 4a - Example Where ( )a ∉x Χ F ..............................................................51 

Table 3. Parameter Specifications for Case 4b. .............................................................53 
Table 4. Optimal Solutions for Case 4b in Table 3........................................................56 
Table 5. CCNIM-dc Solution Results for Specified Cases...........................................74 
Table 6. CCNIM-dc Optimality Gaps for Specified Cases...........................................86 
Table 7. Parameter Specifications for Case 2a. ...........................................................105 
Table 8. Parameter Specifications for Case 2b. ...........................................................105 
Table 9. Parameter Specifications for Case 2c. ...........................................................105 
Table 10. Parameter Specifications for Case 2d. ...........................................................106 
Table 11. Parameter Specifications for Case 2e. ...........................................................106 
Table 12. Parameter Specifications for Case 2f. ............................................................106 

 



 xii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xiii 

LIST OF ACRONYMS AND ABBREVIATIONS 
 
 

ASCM Anti-Ship Cruise Missile 

CCGIM Chance-Constrained Ground Inventory Model 

CCIM Chance-Constrained Inventory Model 

CCNIM Chance-Constrained Naval Inventory Model 

CCNIM-dc CCNIM decomposition  

CCNIM-MAP CCNIM with MAP 

CCNIM-sp CCNIM single period 

CCNIM-pII CCNIM in period-II 

CCNIM-pIIm CCNIM in period-II modified 

DPLP Discrete Probabilistic Linear Program 

FFAM Fully-Flexible Assignment Model 

FMSP Flexible Minmax Subset Problem 

FMSP-lb FMSP lower bound 

IP Integer Program 

KPP Kress, Penn and Polukarov 

LP Linear Programming 

MAP Monotonic Assignment Policy 

MSP Minmax Subset Problem 

MSPA Minmax Subset Problem Algorithm 

PEP P-Efficient Point 

PIP Probabilistic Integer Program 

RFFAM Reduced Fully-Flexible Assignment Model 

RFFAM-lb FFAM lower bound 

RFFAM-mII RFFAM monotonic (allocation in period) II 

RFFAM-rx RFFAM relaxation 

RFFAM-sp RFFAM single period 

RFFAM-spII RFFAM single period (for period) II 



 xiv 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xv 

ACKNOWLEDGMENTS 
 
 

This work was born of most unlikely circumstances, as I was originally scheduled 

for a one-year stay in Monterey to obtain a Master’s degree in Operations Research.  I 

would like to thank Professor Tom Lucas for first suggesting that I stay for a PhD, and 

then outlining the scheme by which it could be done.  I would also like to thank 

Chairman Jim Eagle for his great efforts in pushing my unusual request through the 

bureaucratic maze.  Without these professors’ help, I would never have been in a position 

to pursue this research.   

Of course, I would have never been able to complete this work without the aid 

and guidance of my advisors, Professors Kevin Wood and Moshe Kress, who spent many 

hours reading, polishing, pointing out errors, and correcting my rough ideas.  This 

dissertation is so much better for their effort.   

I would also like to thank Professors Guillermo Owen and Javier Salmeron, and 

Dean Wayne Hughes, for their insightful comments regarding this work, and Professors 

Robert Read, Bob Koyak, and Matt Carlyle for going out of their way to educate me in 

the field of OR.  

I dedicate this work to Raadthie, my love, who sweetened my stay so far from 

home, and to my parents, who have educated me in so many other things.    

 

 

 



 xvi 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xvii 

EXECUTIVE SUMMARY 
 

 

We present models for the procurement and allocation of anti-ship cruise missiles,  

a difficult problem facing many modern navies, which must plan for many possible 

combat scenarios.  The number of missiles required by each ship over an entire conflict 

may exceed its capacity, so a ship may need to return to a depot at a port to load more 

missiles between successive periods of combat.  We consider two periods of combat. 

“period I” and “period II,” and seek to determine minimum-cost initial ship load-outs 

plus depot-level inventory, while ensuring, with sufficiently high probability, that all 

ships can satisfy their assigned missions for each combat period.  Each mission represents 

a target and its associated “demand,” which is the number of missiles required to 

successfully engage that target. 

We formulate this problem as a two-period, three-stage, chance-constrained 

inventory model, which we denote by CCNIM (Chance-Constrained Naval Inventory 

Model).  We assume that all targets will be in range of each combat ship in the fleet, and 

the force commander can assign any target to any ship; however, the force commander 

assigns at most one target to each ship, and does so based on the available missile 

inventories and the target demands.  We further assume that ships have bounded 

capacities, carry no safety stocks, are not recalled to port to offload excess inventories 

prior to period II, and there is no direct transshipment of missiles between ships.  A “cost 

ratio,” the cost of a missile stored in the depot for potential use in period II divided by 

those initially allocated to the ships, reflects operational preferences rather than actual 

monetary costs.   

To solve CCNIM, we first formulate it as FFAM (Fully-Flexible Assignment 

Model), a mixed-integer program with enumerated scenarios.  Because we expect the 

force commander to follow some assignment heuristic when assigning targets to ships, 

we add constraints to FFAM that assign targets with larger demands to ships with larger 

inventories.  We refer to this assignment policy as the “MAP,” and show that assigning 

targets according to this policy satisfies any single-period scenario that can possibly be 

satisfied with the existing ship inventory levels.  Consequently, it is the best myopic 



 xviii 

policy a force commander can adopt.  We also prove that the inventories will be 

sufficient to sustain the two periods of combat for an arbitrary assignment plan if 

transshipment is allowed. 

Clearly, robustness can always be achieved by procuring large quantities of 

missiles.  However, if targets are assigned according to the MAP in every scenario, then 

the number of missiles we must allocate to cover the random demands with the required 

probability of success is minimal in any particular combat period.  Empirically, we 

observe that enforcing the MAP rarely increases the cost of an optimal solution in 

FFAM.  We adopt CCNIM-MAP, a version of CCNIM that includes the MAP, as our 

baseline model.  

Although enforcing the MAP in FFAM improves solution times significantly, 

FFAM remains too difficult to solve for cases of practical size.  For example, an instance 

of FFAM, involving six ships and five scenarios in each period, generates 10,305 

equations and 14,672 variables in the integer programming model.  It can be solved in 

less than an hour only when the cost ratio is very large or very small.  We therefore 

require better solution methods to solve CCNIM-MAP. 

We propose CCNIM-dc, a decomposition algorithm to solve CCNIM-MAP.  

The solution is provably optimal for every cost ratio not greater than 1, and if the cost 

ratio is sufficiently greater than 1.  In other cases, the solution is not provably optimal, 

but CCNIM-dc also provides a lower bound on the optimal cost, so an optimality gap 

can be calculated.  In most of the cases examined, the relative optimality gap is only a 

few percent.  However, the optimality gap cannot be reduced by further computation.  If 

the gap is deemed too large, less efficient techniques must be used to solve that instance. 

We exploit the fact that the problem of allocating sufficient missiles to satisfy a 

single period of combat, when the MAP is enforced, is an instance of a probabilistic 

integer program (PIP), as described by Beraldi and Ruszczyński.  The feasible region of a 

PIP has a special structure that is defined by a set of “p-efficient points” (PEPs), a 

concept developed by Dentcheva, Prékopa and Ruszczyński.  CCNIM-dc enumerates a 

relatively small, cost-ratio-dependent set of period-I allocations, and calculates the 

minimum depot inventory that follows from each one.  Minimum depot inventories are 



 xix 

found either by enumerating PEPs, or by an algorithm proposed by Kress et al. for a 

ground-combat version of CCNIM.  CCNIM-dc is not based on linear or integer 

programming, and can be implemented using a standard programming language. 

We implement CCNIM-dc in MATLABTM version 7.0 on a personal computer 

with a 2.8 GHz Intel Pentium IV processor.  Its solution times are faster than those of 

FFAM by several orders of magnitude.  CCNIM-dc solves in a few milliseconds 

instances that FFAM cannot solve in an hour, and can solve instances of practical size in 

a reasonable length of time.  For example, cases with as many as 25 ships and 25 

scenarios in each period usually solve in less than 100 seconds, and never require more 

than 1,000 seconds.   

 
 

 

 



 xx 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 

 

 

 

 

 

 

 

 

 

 



1 

I. INTRODUCTION  

Two of the key questions that military logisticians ask are:  How much ordnance 

should be procured, and how should it be distributed to combat units given the 

uncertainty of combat?  This dissertation develops models and solution methods to help 

answer instances of these questions in the context of naval surface warfare.  

 

A. A GENERAL SUPPLY-CHAIN FRAMEWORK FOR COMBAT UNITS 

Combat forces routinely use a variety of ordnance to suppress enemy forces, 

destroy them, or disrupt their weapons.  Sustaining a combat force requires plans to 

prescribe the total amount of ordnance of each type that should be procured, the initial 

allocation plan to combat units, and, by implication, the amount of ordnance to be stored 

in one or more depots for distribution at a later time.  An optimal plan must identify a 

minimum-cost package of ordnance that meets operational requirements with a 

sufficiently high probability of success.  Uncertainty arises because a variety of combat 

scenarios may arise, each with potentially distinct demands for ordnance. 

We define a combat scenario, or simply scenario, as a set of demands for 

ordnance in a single period of combat.  A demand denotes the amount of ordnance that 

must be fired by a shooter (friendly unit) to successfully prosecute its assigned mission in 

that scenario.  A mission typically consists of one or more targets (enemy units) that must 

be prosecuted.  Because the amount of ordnance fired in a successful engagement of a 

specific target is essentially random [Ancker 1982, pp. 1-8], we may represent a single 

envisioned set of targets by several different scenarios.  Note that we only consider 

demands for a single type of ordnance, such as artillery shells or anti-ship cruise missiles 

(ASCMs).  The duration of a combat period is not specified in days, but rather is the time 

between successive opportunities to replenish supplies.  In the naval context, for 

example, a combat period can last several days, and is delimited by “lulls” in the combat, 

during which some or all of the ships in a fleet could return to port for resupply. 

For a force to successfully prosecute a scenario, we assume that all demands must 

be met using the units’ available supply of ordnance.  We refer to successfully prosecuted 



2 

scenarios as satisfied scenarios.  If any unit cannot satisfy the demand for its assigned 

mission, the scenario is considered unsatisfied.  It is possible to relax this assumption and 

require that only a fixed fraction of the demands be met to satisfy a scenario.  We do not 

consider this model variant in this dissertation, however. 

The planning horizon may include several periods of combat in succession, and 

the probability that a particular scenario in period 1t >  occurs can be conditional on the 

scenario that actually occurred in period t−1.  We refer to the sequence of single-period 

scenarios for 1,...,t T=  as a compound scenario.  Note that in most stochastic-

programming literature, what we call a “scenario” is referred to as a “node in a scenario 

tree,” and our “compound scenario” is simply a “scenario.”  Our terminology is more 

convenient when considering multi-period problems as a series of single-period 

problems, a recurring idea in this dissertation. 

We assume that the scenarios, with their respective probabilities, have been 

established by planners as an extension of the war plans.  The scenarios can represent 

different hypothesized battles as well as uncertain demands within each battle.  The 

duration of the conflict we plan for is usually long enough that combatants have the 

opportunity to replenish their supplies, often more than once [Rabinovitch 1997, p. 252]. 

Each combat unit has some inventory capacity associated with it.  The capacity 

may be “strict,” as is the case for missiles carried aboard combat ships, or “elastic,” as is 

the case for many ground units, which can increase the number of supply vehicles 

traveling with the combatants.  A unit’s total requirement for ordnance to satisfy its 

forecasted assigned missions in a compound scenario may exceed its carrying capacity.  

In that case, the unit may be forced to replenish its supply after some period of combat. 

Even if a unit’s carrying capacity is sufficient to meet the largest conceivable 

compound demand, it may be preferable not to load the unit to that level.  Following the 

realization of a scenario in some period, the probabilities of scenarios in subsequent 

period are updated.  It is possible then that high-demand scenarios no longer seem likely, 

and the requirements for certain units can be lowered.  We wish to avoid situations in 

which, after a period of combat, some units hold excess ordnance that may be needed by 

other units in the next period.  Replenishment from central locations is advantageous 



3 

then, since it utilizes risk pooling (e.g., Simchi-Levi et al. [2000, pp. 56-60]) to reduce 

the total amount of ordnance that must be deployed in the first combat period.  Note that 

risk pooling refers to the risk of shortages due to high demands, and not to the risk of 

losing ordnance associated with disabled units.  (It is clear that reducing the amount of 

deployed ordnance reduces the amount of ordnance that can be lost to enemy actions, but 

we do not address such issues in this dissertation.) 

One of the common features of our problem and stochastic supply-chain models 

in the civilian sector is recourse.  After a period of combat, we can resupply ships in 

order to improve our chances for success in subsequent periods.  This action constitutes 

recourse, as defined in the stochastic-programming literature (e.g., Birge and Louveaux 

[1997, pp. 84-100, 122-127]).  Thus, the model we eventually create will be a multi-stage 

stochastic-programming model with recourse. 

 

B. CHANCE-CONSTRAINED PROGRAMMING 

One of the key features that distinguishes the problem of procuring and deploying 

ordnance from other supply problems is the singularity of war [Kress 2002, p. 242].  This 

contrasts with civilian supply-chain planning models that typically apply to repetitive 

scenarios over relatively long time horizons [Diwekar 2002].  Because we expect the 

planned supply chain to be tested in war only once, albeit across multiple time periods, 

our models will incorporate probability requirements, i.e., probabilistic constraints, or 

chance constraints.  (For example, see Birge and Louveaux [1997, pp. 103-108].)  Multi-

stage supply-chain models using chance constraints to guarantee service levels do exist 

(e.g., Charnes, Cooper and Symonds [1958], Murr and Prékopa [1996], Bassok et al. 

[2002], Paschalidis et al. [2004]), but a typical multi-stage stochastic program would 

evaluate the effect of uncertainty through an objective function involving expected costs 

and/or penalties (see Porteus [1990] and the references therein) as opposed to using 

chance constraints.     

The first mathematical-programming model to incorporate chance constraints is 

attributed to Charnes et al. [1958], who model the multi-period planning of heating-oil 

production under uncertain demand.  They introduce multiple individual chance 



4 

constraints to guarantee each period’s demand is met with the required probability.  

Miller and Wagner [1965] introduce joint chance constraints as a theoretical extension of 

the work of Charnes et al.  Since the 1960s, the theoretical understanding of chance 

constraints has increased significantly (see Prékopa [1995] and the references therein), 

and several specialized algorithms for solving problems formulated with such constraints 

have been proposed.  However, most of this research has been restricted to models 

involving continuous distributions and decision variables  

When the probability distributions are discrete, or the decision variables integer, 

chance-constrained models become significantly harder to solve [Beraldi and 

Ruszczyński 2001], and there is relatively little literature dedicated to such models.  

Dentcheva, Prékopa and Ruszczyński [2000] provide an extensive analysis of the 

properties of the feasible region of the discrete probabilistic linear program (DPLP) with 

a joint chance constraint involving the discrete random vector ξ :  

(DPLP)             min Tc x   (1.1) 

                          s.t. 

                          { }Pr T p≥ ≥x ξ   (1.2) 

                                       A ≥x b   (1.3) 

                                          ≥x 0   (1.4) 

To analyze this problem, the authors use the concept of a p-efficient point, first 

introduced by Prékopa [1990]: 

Definition:  Let [ ]0,1p ∈ , and let F denote the probability distribution for the n-

dimensional, discrete random vector ξ .  A point n∈v  is called a p-efficient point (PEP) 

of F , if ( )F p≥v  and there is no ≤y v , ≠y v  such that ( )F p≥y .  █ 

Dentcheva et al. prove that there is a positive and finite number of PEPs 

associated with any discrete random vector, and that the feasible region for the 

probabilistic constraint in any DPLP can be reformulated as a union of cones emanating 

from those PEPs.  In particular, let ,j j J∈v , be all the PEPs of F  and let n
j jK += +v  

denote the cone emanating from jv ; then constraint (1.2) is equivalent to  



5 

                              j
j J

T K
∈

∈x ∪ .  (1.5) 

We can solve a DPLP by enumerating all its PEPs, and by then processing the 

simple linear programs that result from considering each cone separately.  Prékopa, 

Vizvári and Badics [1996] and Beraldi and Ruszczyński [2001] develop algorithms for 

enumerating PEPs; Beraldi and Ruszczyński [2002] provide additional details.  If ξ  has 

many dimensions, the algorithms may be computationally expensive, so the authors 

propose iterative methods that generate new PEPs as needed, en route to finding an 

optimal solution. 

Replacing constraints (1.4) with the integrality restriction n
+∈x  creates a 

variation of a DPLP that Beraldi and Ruszczyński [2001] call a probabilistic integer 

program (PIP).  These authors use the PEPs of F  in a specialized branch-and-bound 

procedure to solve the PIP.  Instead of generating PEPs one at a time, as Dentcheva et al. 

do, they begin with an upper bounding vector on the PEPs as the root of a PEP search 

tree.  They define the level of an integer vector as the sum of its components, and use a 

backwards enumeration procedure to generate PEP candidates, i.e., nodes in the search 

tree, one level at a time.  For each candidate, they generate an integer program (IP) in 

which the probabilistic constraint is replaced by some lower bound on the value of any 

future node emanating from that branch.  They then solve a linear relaxation of that IP, 

and are able to prune the search tree if the objective value is higher than that of the best 

known feasible solution.  Leaves in the next level are generated for branches that are not 

pruned.  This approach works better than that proposed by Dentcheva et al. for integer 

decisions variables.    

In another approach to solving PIPs, Ruszczyński [2002] reformulates the 

probabilistic constraints as set-covering constraints, in a model that chooses which of the 

discrete scenarios sξ  are to be satisfied and which are not.  A partial ordering “≺ ” is 

defined on the scenarios, based on the component-wise values of their respective right-

hand-side realizations: s ss s ′′ ⇔ ≤ξ ξ≺ .   If the ordering is consistent, we can generate 

constraints of the form s sz z ′≥ , where 1sz =  if scenario s is not satisfied and 0 otherwise.  

The PIP can be viewed as a knapsack problem, where we choose the scenarios that are 



6 

not satisfied subject to a maximum aggregate probability threshold.  Ruszczyński 

proposes a solution method that iteratively generates and lifts cover cuts until a solution 

to the PIP is found. 

 

C. INITIAL FORMULATIONS  

This dissertation presents work that extends research initiated in Kress, Penn and 

Polukarov [2004], hereafter referred to as “KPP.”  These authors formulate a two-level, 

two-period, chance-constrained inventory model (CCIM) with recourse, in a military 

setting.  The KPP version of CCIM, which we refer to as CCGIM (“G” stands for 

“ground”), captures the basics of ground combat, in which units are assigned different 

sectors of a battlefront, and each must meet the opposition in its sector.  We refer to the 

demands in each scenario as being rigidly assigned, because once a scenario unfolds, 

each combat unit is tasked with a specific mission, in its assigned sector, and the demand 

for ordnance induced by that mission.  Each combat unit carries its own ordnance and 

attempts to prosecute its mission using that ordnance.  Additional ordnance is stored at a 

central depot that can ship it to units whose supplies need to be replenished for the second 

period of combat. 

KPP assume that the units must rely on their initial stocks to satisfy any demands 

in the first period (period I), and that each unit maintains sufficient safety stock with 

which to carry out any mission even when its nominal supply cannot.  However, if any 

unit must use its safety stock, the scenario is considered unsatisfied.  Following period I, 

units replenish their supplies (including their safety stocks, if used) to acceptable levels in 

view of the second period’s (period II) projected scenarios.  Replenishments are made 

from the central depot, or by inter-unit transfers.  Thus, excess ordnance can be 

redistributed following period I.  KPP assume the cost of capacity at the combat units is 

linear in the amount of supply, and this cost is factored into the price of ordnance initially 

allocated to the units.  Hence, it is reasonable to assume that the cost of carrying ordnance 

with the ground forces is greater than that of storing it in the depot.   

Under the conditions described above (possible consumption from the safety 

stock, possible transshipment during resupply, and greater cost for ordnance at the 



7 

combat units than at the depot), CCGIM can be decomposed into two separate single-

period problems and solved sequentially.  The period-I problem allocates a minimum 

amount of ordnance so as to be able to meet uncertain demands in period I with a 

specified probability.  The period-I allocations are used as parameters in the period-II 

problem that minimizes the amount of ordnance to be added to the units’ inventories from 

the depot.  Each of those problems is a special case of a combinatorial problem that KPP 

call the Minmax Subset Problem (MSP).  KPP provide an empirically-efficient, exact 

algorithm to solve the MSP (see Kress et al. [2004]), and prove that solving the two MSP 

problems sequentially solves CCGIM.   

We present CCNIM (“N” stands for “Naval”), a second variant of CCIM that 

models consumption of ASCMs in naval surface warfare.  ASCMs constitute the major 

weapon system of modern navies that do not rely on airpower (for example, the fleets of 

Denmark, Greece, and the Netherlands [Baker 2002]).  The naval-combat inventory 

model is more complex than CCGIM, however, and cannot be solved with KPP’s simple 

decomposition procedure.  

A key difference between ground combat and naval surface combat is the 

flexibility in mission assignments within a specific scenario.  A high degree of 

interchangeability arises in meeting demands because ASCM ranges are often long 

compared with the distances between battling combat ships [Hughes 1995].  

Consequently, once a set of targets becomes evident, the combat force has significant 

freedom in assigning targets to shooters.  Targets are assigned among the available 

shooters based on available supplies and tactical positions.  In some cases, each target is 

within range of all potential shooters; we refer to this situation as fully flexible.   When 

the tactical situation does not allow every ship to engage any target, we refer to the 

targets in that scenario as being semi-flexibly assigned.  In any case, we assume each 

target is assigned to one specific shooter, and its demand is not shared.  This dissertation 

focuses on the fully-flexible case, which provides a lower bound (optimistic value) on the 

required number of missiles for any other case. 

Other conditions necessary for KPP’s simple decomposition approach, 

appropriate for ground combat, do not hold for naval combat.  We assume the existence 



8 

of lower and upper bounds on the number of missiles that will be carried aboard a ship 

because of fixed capacity constraints, operational considerations and doctrine.  The 

assumption of a safety stock is unreasonable for combat ships, which typically have 

onboard inventories of at most eight ASCMs [Baker 2002].  Therefore, each ship can 

expend no more than its onboard inventory, and “backorders” on missiles do not arise.  

We assume that if the required number of missiles to cover an assigned mission exceeds 

the number available onboard the ship, the ship will “stay and fight” and expend its entire 

inventory.  However, scenarios in which any ship cannot satisfy its assigned mission are 

considered unsatisfied.  A small adjustment, which we do not pursue here, can model 

situations in which an insufficiently armed shooter avoids engaging its assigned target.   

Once a missile is procured, we assume that the monetary costs of loading it onto a 

ship prior to period I or storing it at a shore-based depot are essentially equivalent, and 

not considered in the decision process.  However, we still define a cost ratio between the 

cost of storing a missile in the depot and the cost of initially allocating a missile to a 

combat ship.  This ratio represents our operational preferences regarding allocation 

strategies, by defining the relative value of missiles initially allocated to ships compared 

with those stored in the depot for period II.  Essentially, whenever the ratio is not 1, we 

are willing to buy more than the minimum total number required in order to obtain an 

allocation plan that suits us.  If we wish to reduce the operational burden of carrying out 

wartime replenishment operations in port, we set the depot cost higher than the on-ship 

cost, so the ratio exceeds one.  If we wish to avoid the risk of losing missiles due to own-

force casualties or expenditure on low-value targets, we can set the ratio below 1.  For 

example, setting the cost ratio to 1.25 means that we view a solution that procures five 

missiles and allocates them to the ships, to be equally desirable as a solution that requires 

us to procure only four missiles that must be stored at the depot.  Similarly, setting the 

cost ratio to 1 ε+  , for a small 0ε > , corresponds to a solution that acquires the 

minimum total number of missiles, but allocates as many of them as possible to the ships. 

Combat ships cannot normally transfer missiles directly between themselves, as 

ground-combat units can.  That is, no direct transshipment occurs.  We also assume that 

no ship will be required to make a port call for the sole purpose of offloading missiles for 

the use of some other ship.  Therefore, the model assumes that no transshipment 



9 

capability exists whatsoever, and any requirement for missiles that a ship might have 

following the first period of combat must be met by missiles stored in onshore depots.  

This assumption is conservative because, in practice, some ships will return to port for 

other reasons, and will be able to offload missiles.  Because of the flexible assignments, 

lack of safety stocks, no transshipment, bounded inventories, and arbitrary cost ratio, we 

see that new techniques are required to solve a CCIM in the context of naval combat. 

   

D. DISSERTATION OUTLINE 

This dissertation presents two-period, chance-constrained models for the 

procurement and allocation of ASCMs for naval surface warfare.  Chapter II develops 

CCNIM and its single-period variant as stochastic programs.  It also presents a 

deterministic equivalent IP of CCNIM, which can be implemented in standard 

optimization software.  Because the IP’s solution times are often inadequate for practical 

purposes, the rest of this dissertation develops faster solution methods.  Chapter III 

describes the properties of the “Monotonic Assignment Policy,” by which a commander 

assigns targets with larger demands to ships with larger inventories.  Because of these 

properties, we argue that CCNIM should be modified to include such a policy, and 

obtain CCNIM-MAP (CCNIM with constraints enforcing the Monotonic Assignment 

Policy).  Chapter IV explores the feasible region of CCNIM-MAP, and identifies points 

within the feasible region that will be optimal if specific conditions on the objective 

function hold.  In Chapter V, we use these observations to develop CCNIM-dc, a 

specialized decomposition algorithm, which can be implemented in a standard computer-

programming language.  CCNIM-dc provides an optimal solution for a wide range of 

cost ratios, and bounds the optimal cost otherwise.  It requires several orders of 

magnitude less time than the IP to solve problems of practical size. 



10 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 

 

 

 

 

 

 

 

 

 

 



11 

II. MATHEMATICAL MODELS 

This chapter describes a chance-constrained inventory model for naval surface 

warfare, CCNIM.  Initially, we develop the single-period model CCNIM-sp, and show 

how it relates to the theory of probabilistic integer programs (PIPs).  We then develop the 

full model, CCNIM, which spans two periods of combat.  CCNIM allows full flexibility 

in mission assignment, i.e., any ship may prosecute any mission, although shooter-to-

mission assignments are one-to-one.  It assumes no transshipment capability, direct or 

indirect, between the ships, and explicitly accounts for the limited onboard inventories.  

We then develop the reduced fully-flexible assignment model (RFFAM), a deterministic 

equivalent integer-programming model of CCNIM with improved performance 

compared to FFAM, developed in Avital [2004].  RFFAM is substantially faster than 

FFAM, and solves some practical instances in a reasonable length of time.  However, for 

other instances, RFFAM may fail to produce even feasible solutions in one hour of 

computation.  For this reason, we dedicate the later chapters of this dissertation to the 

development of specialized solution techniques for CCNIM.   

 

A. CHANCE-CONSTRAINED MODELS FOR NAVAL WARFARE 

1.  CCNIM for a Single Period 

We first develop a single-period model of the inventory problem we consider.  Let 

n  denote the number of combat ships (shooters) on the planner’s side.  Let s ∈S  denote 

an index set of combat scenarios, such that each scenario has probability of occurrence 

0sϕ >  and 1s
s

ϕ
∈

=∑
S

.  Each scenario sd  comprises a vector of n demands associated with 

n missions, which the shooters should satisfy in scenario s.  We let d  denote the n-

dimensional, integer, random vector of demands drawn from the discrete set of scenarios 

{ }
1 ss=

= d
S

D ∪ .   

In practice, the vector of n mission demands is constructed from a conceptualized 

set T  of potential targets.  We associate a specific demand tsd  with target t  in scenario 

s , which represents the number of missiles required to successfully engage the 



12 

corresponding target in that scenario.  Because that number is generally stochastic, we 

may generate several scenarios with different mission demands to represent the same 

target set.  We set 0tsd =  if target t does not actually appear in scenario s (it may not 

even be present).  Let sT  denote the set of engaged targets in scenario s, defined as 

{ }| 0s tst d= ∈ >T T , and assume s n≤T  for all s. 

Without loss of generality, we construct sd  by arranging components tsd  in such 

a way that 0tsd >  for 1, , st = T…  and 0tsd =  for { }1, , max ,st n= +T T… .  Then, 

( )1 , ,s s nsd d=d … .  Because each mission comprises at most one target, we often use the 

term “target” in place of “mission” in the following text. 

For example, suppose that there are three shooters, and that 4=T .  We assume 

that in no scenario would the three shooters be required to engage all of the enemy targets 

concurrently.  In scenario 1s , we encounter two of the targets, and require 2 missiles to 

successfully engage each one, and thus ( )1 2, 2,0=d .  In scenario 2s , we encounter the 

same targets, but require two salvos to successfully engage the second target, setting 

( )2 2,4,0=d . 

We minimize the procurement cost of missiles required to satisfy demands in 

projected scenarios, while satisfying a user-specified minimum probability of success p .  

A scenario is considered satisfied if all ships have enough missiles to satisfy the demands 

associated with their assigned missions in that scenario.  The model chooses an allocation 

plan v  that allocates iv  missiles to ship i  and an assignment plan that assigns one 

mission to each ship in each scenario.  Ship i ’s pre-combat inventory iv  is maintained 

between a discretionary lower bound iv  and a physical upper bound iv . 

Because mission assignments are fully flexible, two scenarios are essentially 

equivalent if one scenario’s demand vector is a permutation of the other’s.  For the sake 

of solution efficiency, if equivalent scenarios are presented as input data, they should be 

consolidated and appropriate adjustments made to the probability data.  (Or, if an 

automatic scenario generator is used to create scenarios, it should be adjusted to avoid 



13 

producing equivalent scenarios.)  We also assume that each scenario is potentially 

feasible, meaning that the ships can carry the required inventories to satisfy that demand 

vector.  If some hypothesized scenario cannot be satisfied because some of its demands 

exceed the capacity upper bounds, it should be excluded from the set of scenarios, and 

the probability threshold requirement adjusted accordingly. 

The flexibility in mission assignments is expressed through the n n×  permutation 

matrix ( ),Y v d , belonging to the set Y  of all binary matrices with a single 1 in each row 

and each column.  In our formulation, ( ), 1imY =v d  if we assign mission m  to ship i .  

Because targets are assigned flexibly, we may choose an assignment plan after the 

demands are observed and the existing allocations of missiles are considered.  Therefore, 

the single-period problem is a two-stage stochastic program with recourse, in which the 

ship inventories v  constitute first-stage decision variables, and the elements of ( ),Y v d  

constitute second-stage recourse variables.  In practice, target assignments may not be 

one-to-one.  However, sharing demands typically reduces the effectiveness of a missile 

salvo, and handling more than a single target by some ship may increase the time it 

requires to plan the engagement.  Consequently, we require sufficient inventories to 

satisfy the scenarios under the one-to-one assumption. 

There are several ways to explicitly formulate the optimal assignment plan 

( ),Y v d .  The expression for ( ),Y v d  in (2.4) minimizes the maximum single-target 

shortage, and the demand vector d  is satisfied if ( ),Y v d  can be found which reduces 

that shortage to zero.  The Chance-Constrained Naval (Surface Warfare) Inventory Model 

for a Single Period (CCNIM-sp) can be expressed as:  

        (CCNIM-sp)       min T

v
1 v   (2.1) 

                        s.t. 

                        ( ){ }Pr ,Y p≥ ≥v v d d  (2.2) 

                        ≤ ≤v v v   (2.3) 

                        ( ) ( ){ }{ }where , argmin max iiiY

Y Y v
+

∈
∈ −v d d

Y

 (2.4) 



14 

For future reference, note that if we could not explicitly express the form of the 

optimal permutation ( ),Y v d , we would treat that functional form as a decision variable, 

and write CCNIM-sp as: 
( ),

min T

Yv
1 v

i
, s.t. constraints (2.2) and (2.3).   

Because ( ),Y v d  represents “recourse” for the shooters, CCNIM-sp is not a PIP, 

as defined by Beraldi and Ruszczyński [2001] (see section A of Chapter I), except for 

some important special cases.  In general, the concept of a PEP is not well defined for 

this problem because the optimal permutation of d  depends on the number of missiles 

allocated to each ship and cannot be known a priori.  An alternative formulation, where 

the permutations are applied to the vector of allocations v  instead of to d , is also not a 

PIP, in general.  Although PEPs can now be found for the distribution of d , the optimal 

solution need not lie in the union of cones emanating from the PEPs, a characteristic of a 

PIP.  For example, suppose that the six permutations of the vector (3,2,1) are the possible 

scenarios, with equal probability.  If we set 5 6p = , the only PEP is (3,3,3), but the 

optimal allocation plan is clearly (3,2,1), because we can assign the first ship to the target 

with demand 1, the second ship to the target with demand 2 and the third ship to the 

target with demand 3 in every scenario. 

There are some important special cases where PEPs do apply.  Under some 

assignment policies (perhaps coupled with other constraints), the matrix ( ),Y v d  depends 

only on the problem data, i.e., ( ) ( ), s sY Y s= ∀v d d .  In that case, we can define 

equivalent demand vectors and eliminate the matrix Y  altogether, obtaining a PIP.  For 

example, in CCGIM, where targets are rigidly assigned, we have Y I= , and no 

manipulation of the demand vectors is needed.  If Y is eliminated, The PEPs of the 

distribution of the demand vectors are useful, and can be found, for example, by the 

enumeration schemes described by Beraldi and Ruszczyński [2002].   

 

2.  CCNIM  

In the actual problem we wish to solve, we assume two-periods of combat, 

between which ships may return to port to replenish their supply from a central depot.  



15 

The index set of period-I scenarios, IS , is defined as in CCNIM-sp.  Let IIs′∈S  denote 

the index set of period-II combat scenarios.  Each scenario IIs′∈S  has an associated 

conditional probability |s sϕ ′ , such that 
II

I
| 1s s

s

sϕ ′
′∈

= ∀ ∈∑
S

S .  Therefore, the demand vector 

for period II, IId , is an integer vector whose distribution may depend on the scenario 

occurring in period I.  We denote a realization of this conditional random vector by II
s′d .  

We refer to a realization of ( )I II,d d  as a “compound scenario”, as defined in Chapter I. 

For each period-I scenario Is ∈S , we define the subset ( ) { }II II
|| 0s ss s ϕ ′′= ∈ >S S , which 

indexes all possible demand vectors that might follow in period II.  The subsets ( )II sS  

may not be disjoint or even different for the various Is ∈S .   

Let Ix  denote the total number of missiles initially allocated to the ships, and let 

IIx  denote the number of missiles initially allocated to the depot for potential use in 

period-II.  Let I
iv  and II

iv  denote the number of missiles allocated to ship i  in period I and 

in period II, respectively.  We assume that the cost 1c  of allocating missiles to the 

shooters may be different from the cost 2c  of storing missiles at the depot.  Initial 

allocation and assignment plans are chosen in period I so that the period-I scenarios are 

satisfied with a user-specified probability Ip .  Following period I, CCNIM calculates 

each ship’s remaining inventory ir .  Because a ship may not expend more missiles than it 

carries, if its assigned demand in period I exceeds its inventory, then the remaining 

inventory is zero.  Then, for each ship i, the model supplements its remaining inventory 

with 0iw ≥  missiles drawn from the depot, thereby setting II
iv .  Missions in period II are 

assigned so that period-II scenarios are satisfied with a user-specified probability II
sp , 

which may depend on the realized demand scenario in period-I.  CCNIM also ensures 

that each ship’s inventory is maintained within required limits at the outset of each 

combat period.  We illustrate the “flow” of missiles in Figure 1.  

   



16 

 

Figure 1.   Schematic Missile Flow in a Compound Scenario for Three Ships.   
We initially procure Ix + IIx  missiles at a cost of I II

1 2c x c x+ .  We allocate 
I
iv  missiles to ship i , and store IIx  in the depot.  The ships face a random 

set of targets with a known distribution, which are represented by the 
demand vector Id .  The commander assigns one demand to each ship, 

represented by the permutation matrix IY , and, following the engagement, 

ir  missiles remain on ship i.  We supplement ship i ’s inventory by iw  

missiles, for a total of II
iv .  In period II, the ships face the random demands 

represented by IId , and the commander again may choose which demand 

to assign to each ship, represented by IIY . 

 

Below, we formulate CCNIM as a chance-constrained program, which may be 

viewed as a three-stage stochastic program.  The first stage determines the total number 

of missiles to procure and how many to allocate to each ship in period I.  Once the 

period-I scenario is revealed, the model’s second stage assigns missions, and, following 

the battle in period I, the number of missiles to add to each ship’s inventory for period II.  



17 

We denote optimal second-stage decisions by ( )( )I
II, , |Y Fv d di  and ( )( )II, |Fw r di , 

respectively, where ( )II |F di  denotes the conditional distribution of the period-II 

demands.  After the period II scenario is revealed, the model’s third stage assigns 

missions for that period; we denote the optimal third stage decisions by ( )II ,Y v d .  

However, the only “real” decision variables are the first-stage variables, after which the 

system is set in motion, and we simply observe whether the random demands can be 

covered with sufficiently high probability.  The optimal second-stage and third-stage 

decisions are any combination of assignment plans and replenishment vectors that allow 

us to procure the minimum-cost package.  For the reader’s convenience, we summarize 

the notation used in CCNIM, followed by the model’s statement: 

 

Parameters [units] 

I II,d d  random demand vector associated with period I and period II, 
respectively [missiles] 

( )II |F di  conditional distribution of period-II demands  

I II, sp p  probability threshold for period I, and for period II, if scenario s occurs 
in period I 

1 2,c c  unit cost of procuring a missile and allocating it to a ship or to the 
depot, respectively [$/missile]  

,v v  discretionary lower bound and physical upper bound on the number of 
missiles that may be allocated to the ships [missiles] 

 

Decision Variables [units] 

I II,x x  total number of missiles allocated initially to the ships and to 
the central depot, respectively [missiles] 

I II,v v  numbers of missiles allocated to the ships at the outset of 
period I and period II, respectively [missiles] 

r  numbers of missiles left on the ships following period-I 
[missiles] 

( )( )II, |Fw r di  numbers of missiles receives from the depot following period-I 
[missiles] 



18 

( )( )I
II, , |Y Fv d di  

( )II ,Y v d  

assignment matrix of demands to ships in period I and period 
II , respectively  

        

      (CCNIM)           
( )I II I I

I II
1 2

, , ,
min

x x Y
c x c x+

v i
  (2.5) 

                           s.t. 

                          ( )( ){ }I I I I I I I
IIPr , , |Y F p≥ ≥v v d d di  (2.6) 

                     I I 0T x− =1 v   (2.7) 

                                 I≤ ≤v v v   (2.8) 

                                I n
+∈v   (2.9) 

                      where  ( )( )( )I I I I I I
II, , |Y F

+
≡ −r v v d d di   (2.10) 

                               ( )( )II I
II, |F≡ +v r w r di  (2.11) 

          and where ( ) n
+∈w i  is chosen such that  

                         ( ){ }II II II II II II IPr , sY p s≥ ≥ ∀ ∈v v d d S  (2.12) 

            ( )( )I II
II, | 0T F x− ≤1 w r di   (2.13) 

                           ( )( )I
II, |F− ≤ ≤ −v r w r d v ri  (2.14) 

            where  ( ) ( ){ }{ }II , argmin max iiiY

Y Y v
+

∈
∈ −v d d

Y

 (2.15) 

 

Note that CCGIM is a variant of this model.  Because target assignments are 

rigid, ( )( ) ( )I II
II, , | ,Y F Y I= =v d d v di .  Because backorders and transshipments are 

allowed, ir  and iw  may be negative in some cases. 

CCNIM is not a PIP for several reasons.  Not only does each system of chance 

constraints allow permutations of the demand vector, but there are I 1+S  such systems.  

Even if the permutation matrix were fixed for a given missile allocation, defining relevant 

PEPs on the joint distribution of Id  and IId  would be impossible.  However, we could 



19 

still define PEPs separately for Id  and for IId  following each period-I scenario s, a fact 

we exploit in the algorithms we develop later.   

 

B. INTEGER PROGRAMING MODELS 

Stochastic programs are often converted into mixed integer programs and solved 

using standard optimization software, e.g. Ruszczyński [2002].  An IP representation of 

CCNIM, denoted the Fully Flexible Assignment Model (FFAM), is presented in Avital 

[2004].  FFAM’s computational performance is inadequate, and solution times for 

problems of modest size often exceed one hour.  For the reader’s convenience, a full 

description of FFAM is provided in Appendix A. 

The following provides a formal, non-mathematical description of the Reduced 

Fully Flexible Assignment Model (RFFAM), a new IP representation of CCNIM.  This 

model’s formulation requires significantly fewer constraints and variables than FFAM, 

and initial results indicate it solves dramatically faster than FFAM.  We differentiate 

between “regular” constraints, which are the minimum necessary to model CCNIM, and 

“specialized” constraints, which enforce the Monotonic Assignment Policy (MAP) and 

add valid inequalities that reduce the feasible region and improve solution times.  The 

specialized constraints in RFFAM are adapted from those originally developed to 

improve FFAM’s performance.  Some of the specialized constraints require data 

obtained from auxiliary models; we denote such data by “auxiliary parameters.”  A 

detailed explanation of the specialized constraints and the auxiliary models follows the 

mathematical description.   

 

1. RFFAM Specification 

The following non-mathematical description of RFFAM itemizes a list of 

problem requirements followed by the constraint keys where they are represented in the 

mathematical model presented in the next section.   

Regular constraints 

• Minimize the weighted cost of allocating missiles to the combat ships in period I 
and storing extra missiles at a depot for possible use in period II, (2.16). 



20 

      Subject to: 

• Each ship’s binary allocation variable agrees with its inventory, (2.17) and (2.31).  

• Each ship in each scenario is successful only if it has enough missiles to satisfy 
the demand of its assigned mission, (2.18) and (2.32). 

• Each scenario in each period is satisfied only if every ship has enough missiles to 
satisfy the demand of its assigned mission, (2.19) and (2.33). 

• In each period, the probability of successfully covering the scenarios exceeds a 
user-specified threshold, (2.20).  In period II, the cumulative probability must be 
achieved for every possible, preceding, period-I scenario, (2.34). 

• Each ship is allocated a specific number of missiles in each scenario, (2.21) and 
(2.35). 

• Each ship in each scenario is assigned exactly one mission, (2.22) and (2.36). 

• Each mission in each scenario is assigned to exactly one ship, (2.23) and (2.37). 

• Each ship’s inventory following the prosecution of a successful mission equals its 
initial level less the demand associated with its assigned mission, (2.24) and 
(2.25).  Otherwise, the remaining inventory is zero, (2.26).  (All ships “stay and 
fight.”) 

• For each ship, its remaining inventory following the prosecution of its period-I 
mission is a non-negative integer, bounded by the physical capacity limit (2.27). 

• For each ship, the number of missiles it may carry at the outset of each combat 
period is bounded from below (discretionary operational constraint) and from 
above (physical capacity limit), (2.28), (2.29), (2.39) and (2.40). 

• For each period-I scenario, each ship’s total inventory of missiles, before 
prosecuting any period-II mission, equals the post-mission inventory after period I 
plus any missiles that are replenished, (2.30). 

• Following each period-I scenario, the total number of missiles distributed to the 
ships between periods of combat may not exceed the number kept in the depot, 
(2.38). 

Specialized constraints 

• In each period-I scenario, missions with greater demands are assigned to ships 
with greater inventories (MAP constraints), (2.41) and (2.42). 

• The number of missiles allocated to ship i+1 does not exceed the number 
allocated to ship i, (symmetry-breaking constraints) (2.43).   

• The total number of missiles allocated in each period must exceed some minimum 
(total-allocation valid inequalities), (2.44), and (2.45). 

• Each ship is allocated at least some minimum number of missiles in period I 
(single-ship valid inequalities), (2.46). 



21 

2. RFFAM Mathematical Description 

Indices 

i I∈  ships 

k K∈  level (number) of missiles ( { }0, ,max iK v= … ) 

m M∈  missions 

Is ∈S  scenario s  in period I 

IIs′∈S  scenario s′  in period II 

       
II ( )sS  Subset of period-II scenarios that may occur (with 

positive probability) following period-I scenario s 

 

Initial Parameters [units] 

msd  demand associated with mission m in scenario s [missiles] 

sϕ  probability that period-I scenario s occurs 

|s sϕ ′  conditional probability that period-II scenario s′ occurs, given that 
period-I scenario s occurs  

Ip  probability threshold for period I (probability that the realized 
scenario must be satisfied) 

II
sp  probability threshold for period II, if scenario s occurs in period I 

1c  
unit cost of procuring a missile and allocating it to a ship 
[$/missile]  

2c  unit cost of procuring a missile and storing it in the depot 
[$/missile] 

iv  discretionary lower bound on the number of missiles that may be 
allocated to ship i [missiles] 

iv  physical upper bound on the number of missiles that may be 
allocated to ship i [missiles] 

 

Auxiliary Parameters [units] 

Ib  minimum aggregate ship load-out required to satisfy the period-I 
scenarios [missiles] 

II
sb  minimum aggregate ship load-out required to satisfy the period-II 

scenarios following scenario s in period I [missiles] 



22 

iv  period-I data-specific lower bound on the number of missiles that 
may be allocated to ship i [missiles] 

 

Decision Variables [units] 

(Note:  As discussed later, variables I
iv , II

isv  and isw can be substituted out.) 

I
iv  number of missiles allocated to ship i in period I [missiles] 

I
ikx  1 if ship i has k missiles before the first combat period, and 0 

otherwise 
II
isv  number of missiles allocated to ship i in period II following period-I 

scenario s [missiles] 
II
iksx  1 if ship i is replenished to level k missiles following period-I 

scenario s, and 0 otherwise 
IIx  number of missiles allocated initially to the central depot for 

potential use in period II [missiles] 

isr  number of missiles left on ship i following period-I scenario s 
[missiles] 

isw  number of missiles i receives from the depot following period-I 
scenario s [missiles] 

I
sz  1 if period-I scenario s is satisfied, and 0 otherwise 

I
isz  1 if ship i successfully covers its assigned mission in period-I 

scenario s , and 0 otherwise 
II
s sz ′  1 if period-II scenario s′ is successful following period-I scenario s, 

and 0 otherwise 
II
is sz ′  1 if ship i successfully covers its assigned mission in period-II 

scenario s′ following period-I scenario s, and 0 otherwise 
I
imsu  1 if ship i is assigned mission m in period-I scenario s, and 0 

otherwise 
II
ims su ′  1 if ship i is assigned mission m in period-II scenario s′ following 

period-I scenario s, and 0 otherwise 

 
Formulation 

Due to the specialized constraints (2.41) and (2.42), constraints (2.22) and (2.23) 

are redundant, and remain in RFFAM for exposition purposes only. 

 



23 

(RFFAM)      I II
1 2, ,

min i
i

c v c x+∑
r u,x,v w,z

 (2.16) 

                         s. t. 

  Period I:  

                    I I
i ik

k

v k x i= ∀∑   (2.17) 

                  I I I I1
1 , ,

ms

is ik ms ims
k di

z k x d u i m s
v ≥

 
≤ − + ∀ ∈ 

 
∑ S  (2.18) 

                   I I I,s isz z i s≤ ∀ ∈S   (2.19) 

           
I

I I
s s

s

z pϕ
∈

≥∑
S

 (2.20) 

              I 1ik
k

x i= ∀∑   (2.21) 

             I I1 ,ims
m

u i s= ∀ ∈∑ S     (2.22) 

             I I1 ,ims
i

u m s= ∀ ∈∑ S  (2.23) 

                     ( )I I I I1 ,is i ms ims i is
m

r v d u v z i s≤ − + − ∀ ∈∑ S  (2.24) 

                     I I I,is i ms ims
m

r v d u i s≥ − ∀ ∈∑ S  (2.25) 

                     I I,is i isr v z i s≤ ∀ ∈S   (2.26) 

                     { } I0,1, , ,is i i
r v i s∈ ∀ ∈S…  (2.27) 

                     { }I , 1, ,i i i iv v v v i∈ + ∀…  (2.28) 

                    ( ) ( )I 0 , |ik i ix i k k v k v≡ ∀ < ∨ >  (2.29) 

      I I I I, , ,ik is s imsx z z u  binary.    

       Period II: 

                     II I,is is isv r w i s= + ∀ ∈S   (2.30) 

                         II II I,iks is
k

k x v i s= ∀ ∈∑ S   (2.31) 

                    II II II I II1
1 , , , ( )

ms

is s iks ms ims s
k di

z k x d u i m s s s
v

′

′ ′ ′
≥

 
≤ − + ∀ ∈ ∈ 

 
∑ S S  (2.32) 



24 

                                 II II I II, , ( )s s is sz z i s s s′ ′≤ ∀ ∈ ′∈S S  (2.33) 

       
II

II II I
|

( )
s s s s s

s s

z p sϕ ′′
′∈

≥ ∀ ∈∑
S

S   (2.34) 

                  II I1 ,iks
k

x i s= ∀ ∈∑ S   (2.35) 

                II I II1 , , ( )ims s
m

u i s s s′ = ∀ ∈ ′∈∑ S S  (2.36) 

                II I II1 , , ( )ims s
i

u m s s s′ = ∀ ∈ ′∈∑ S S  (2.37) 

                  II I
is

i

w x s≤ ∀ ∈∑ S   (2.38) 

                        { }II I, 1, , ,is i i iv v v v i s∈ + ∀ ∈S…  (2.39) 

                       ( ) ( )II I0 , | ,iks i ix i k k v k v s≡ ∀ < ∨ > ∈S  (2.40) 

        II II II II, , ,iks is s s s ims sx z z u′ ′ ′  binary.    

                              II +x ∈ .   

 Specialized constraints: 

                        I I1 ,iisu i s= ∀ ∈S   (2.41) 

                       I I0 , ,imsu i m i s= ∀ ≠ ∈S   (2.42) 

                   I I
1,

' '

1,ik i k
k k k k

x x i n k′ ′+
≥ ≥

≥ ∀ ≤ −∑ ∑                  (2.43) 

                     I I.i
i

v b≥∑   (2.44) 

                    II II I
is s

i

v b s≥ ∀ ∈∑ S   (2.45) 

                        I 0 ,ik ix i k v≡ ∀ <   (2.46) 

with these restrictions on the data:  

                         1 1i iv v i n+≥ ∀ ≤ −   (2.47) 

                                   I II
1, 1,ms m sd d m n s+≥ ∀ ≤ − ∀ ∈ ∪S S . (2.48) 



25 

This model contains some variables that can be substituted out, namely I
iv , II

isv , 

and isw .  Defining these variables in constraints (2.17), (2.31), and (2.38) generates 

“branching constraints,” however, and branching on these variables accelerates the 

branch-and-bound solution process for the integer model; see Appleget and Wood [2000].   

 

3. Explanation of the Specialized Constraints 

It often happens that RFFAM finds an optimal integer solution fairly quickly, but 

the solver spends a great deal of time pruning the branch-and-bound tree before it can 

declare that solution optimal.  The specialized constraints included in RFFAM help 

reduce solution times by substantially tightening the linear-programming (LP) lower 

bound, and reducing the number of nodes in the branch-and-bound tree that must be 

explored. 

Three sets of constraints restrict target assignments to reflect the MAP (described 

shortly).  While this restricts the problem (with respect to CCNIM), the optimal solution 

value, in our experience, seldom increases at all compared with that of the unrestricted 

model.  Other constraints tighten the LP relaxation by enforcing lower bounds on the 

number of missiles that each ship requires individually and that the combat force requires 

as a whole to meet the demands of each combat period.  These lower bounds are found by 

solving instances of single-period inventory models.   

a. Operational-Assignment and Symmetry-Breaking Constraints 

Identifying optimal assignment plans is difficult for RFFAM, and 

obviously would also be a very difficult task for a force commander to determine in real-

time.   (We assume a human commander assigns the targets, although an automated 

decision aid could also be used.)  In all likelihood, the commander attempts to satisfy the 

current demands by following some intuitive assignment rules, and cannot assess the 

implications of each possible outcome on the post-battle distribution of missile 

inventories.  If an optimal plan requires fewer missiles than one prescribed by any simple 

rules, then it is unlikely that the commander will be able to identify it in real-time.  By 

using some alternative plan, he may use more missiles than the scenario prescribed, and 

the number of missiles in the depot may no longer be sufficient for the period-II 



26 

requirements.  By incorporating an assignment policy in RFFAM, we guarantee that the 

procurement levels can cover scenarios with the required probability if that policy is 

indeed followed. 

A plausible assignment rule, which we call the Monotonic Assignment 

Policy (MAP), assigns targets with larger demands to ships with larger inventories.  As 

well as being computationally convenient, the MAP is desirable from an operational 

standpoint.  Assignment plans that follow the MAP minimize the maximum shortage 

over all targets.  As a result, the MAP guarantees that all the missions are satisfied, if that 

is at all possible.  Due to these properties, which we formally prove in Chapter III, we 

believe that a commander would have little motivation to choose a different assignment 

plan. 

In principle, there can be many assignment plans (combinations of 

variables) that conform to the requirements of the MAP.  If we assume that ships are 

listed in order of non-increasing upper bounds 1, ,i n= … , we can express the MAP in an 

efficient manner.  We first reorder the demands in each scenario in non-increasing order, 

so that 

          I II
1, 1,ms m sd d m n s+≥ ∀ ≤ − ∈ ∪S S . (2.48) 

We then assign the missions to the ships in that order for period I, obtaining the 

constraints  

                I I1 ,iisu i s= ∀ ∈S    (2.41) 

               I I0 , ,imsu i m i s= ∀ ≠ ∈S .   (2.42) 

Period-I allocations are now guaranteed to be non-increasing in the ships’ 

index.  Experience indicates that including explicit symmetry-breaking constraints, 

           I I
1,

' '

1,ik i k
k k k k

x x i n k′ ′+
≥ ≥

≥ ∀ ≤ −∑ ∑ ,  (2.43) 

which force an allocation plan in which ships with a lower index are allocated more 

missiles than ships with a higher index, improves the model’s solution time. 

Similar constraints cannot be easily applied to period II because different 

permutations of the period-II allocation plan have different costs, which depend on the 



27 

number of missiles that are added to the remaining inventory from period I.  Hence, only 

after observing the period-I remainders, can we know specifically what inventory level to 

allocate to each ship.   

We require complex constraints to ensure that the inventory of ship i  is no 

less than that of ship i′  if ship i′  is assigned mission m  and ship i  is assigned any 

mission m m′ < .  Otherwise, there is no practical restriction on the difference between the 

two inventories.  Such constraints can be formulated as follows, where { }max i
i

v v≡ : 

    ( ) ( )II II II II I II1 2 1 , , 2, , ( )is i s im s s i ms s
m m

v v u v v u i i i m s s s′ ′ ′ ′ ′
′<

′− ≥ + + − − ∀ ≠ ≥ ∈ ′∈∑ S S . (2.49) 

These constraints are not included in RFFAM because testing indicates that RFFAM 

solves faster without them.  In any case, the period-II allocation in any feasible solution 

of RFFAM will successfully cover the period-II demands with probability II
sp  if the 

MAP is followed (see Corollary 1 in Chapter III).  Therefore, the solution of RFFAM 

guarantees a sufficient number of missiles is procured if the MAP is followed in both 

periods. 

b. Aggregate-Allocation Valid Inequalities 

The aggregate-allocation valid inequalities (integer cutting planes) exploit 

the solutions of single-period problems.  Recall that Ib  is the minimum aggregate ship 

load-out required to satisfy the period-I scenarios and II
sb  is the minimum aggregate ship 

load-out required to satisfy the period-II scenarios following scenario s in period I.  We 

can use Ib  and II
sb  to generate lower bounds on the number of missiles that must be 

allocated to combat ships in each period.  Since any feasible solution to the two-period 

problem must satisfy the period-I constraints, we obtain  

             I I
i

i

v b≥∑ .   (2.44) 

Similarly, the total number of missiles allocated to the ships in period II 

must reach at least II
sb  following period-I scenario s, and from this fact we obtain   

            II II I
is s

i

v b s≥ ∀ ∈∑ S   (2.45) 



28 

We obtain Ib  by solving a single-period model, defined by constraints 

(2.16)-(2.21), (2.29), and (2.41)-(2.43), but where we set 1 1c =  and 2 0c = .  We refer to 

this model as RFFAM-sp (“sp” stands for “single period.”)  We obtain II
sb  by solving 

RFFAM-spII (“spII” stands for “single period on period II”), a similar model defined on 

the period-II scenarios II ( )s s′∈S  with their respective demands, probabilities and 

specified probability thresholds.  RFFAM-spII comprises the following constraints from 

RFFAM: (2.31)-(2.37) and (2.39)-(2.40), but requires the modified objective function:   

                       
I

II

,
min is

is

v
∈
∑∑

u,x,v z
S

.  (2.50) 

We also include a version of the MAP, to accelerate solution of the model: 

                       II I II1 , , ( )iis su i s s s′ = ∀ ∈ ′∈S S . (2.51) 

The explicit formulation of both models appears in Appendix B. 

Because of the MAP, RFFAM-sp and RFFAM-spII are both PIPs 

(RFFAM-spII must first be decomposed into IS  problems, each with a single 

probabilistic constraint) and could be solved by enumerating PEPs, by a specialized 

method utilizing PEPs, or with the MSP algorithm of KPP.  However, for problems of 

our size, they can be solved as IPs by branch and bound.  The computation time for both 

models is negligible compared to that of RFFAM for problems requiring more than a few 

seconds to solve. 

c. Single-Ship Valid Inequalities 

The discretionary lower bound on a single ship’s inventory, set in 

constraints (2.28), (2.29), (2.39) and (2.40), derives from generic operational 

considerations.  Tighter constraints can be derived from specific problem data.  

We define a modified single-period model denoted RFFAM-lb (“lb” 

stands for “lower bound”) in which we require the set of In S  missions to be assigned to 

the ships as before.  This model uses the same constraints as RFFAM-sp, except that we 

drop constraints (2.19) and replace sz  by isz  in constraint (2.20), so that each ship selects 

its set of successful scenarios independently of the other ships (although mission 

assignments are not independent.)  This relaxes RFFAM-sp because each ship can reach 



29 

the specified probability threshold Ip  by satisfying demands from a set of scenarios 

different from those of another ship.   

We solve RFFAM-lb and obtain an optimal allocation plan 

{ }1, , nv v=v  that defines the number of missiles k allocated to each ship (as specified 

for RFFAM).  We then modify the lower bounds on the capacities by setting  

                         I 0 ,ik ix i k v≡ ∀ <   (2.46) 

before solving RFFAM. 

These inequalities are valid because constraints (2.41) and (2.42) together 

completely control the period-I target assignment plans.  Therefore, the target-to-shooter 

assignment plans generated by RFFAM-lb are identical to those generated by RFFAM 

in period I.  The only open decision actually left to RFFAM in period I and to RFFAM-

lb is the choice of an allocation plan with a sufficient number of missiles to meet the 

probability threshold.   

Because the target assignments are forced through the assignment rules, 

RFFAM-lb is a PIP.  In fact, the solution of RFFAM-lb provides the same lower bound 

on the level of PEPs for RFFAM-sp as would have been obtained by using the method 

described in Dentcheva et al. [2000].  There, the lower bounding vector on any PEP is 

obtained by using the marginal distribution for each component of the demand vector. 

Equivalent constraints cannot be formulated for period II, because the 

remainders are not known in advance.  For example, consider the two period-II demand 

vectors (6,3,1) and (5,3,3), and assume that only one of them must be satisfied.  Then 

solving a single period model with this data produces the optimal allocation (6,3,1).  

However, if the three ships have 3 missiles remaining each, following the period-I 

scenario, then it would be less costly to choose to satisfy the scenario (5,3,3), and 

replenish 2 missiles from the depot, rather than satisfying the scenario (6,3,1), which 

requires 3 additional missiles.  If (6,3,1) were used as single ship lower bounds in period 

II, the minimum allocation would be (6,3,3), which is excessive.   



30 

C. SUMMARY OF COMPUTATIONAL BEHAVIOR 

We compare the solution times of RFFAM to those of FFAM using the CPLEX 

solver version 9.0 [ILOG 2003] on a Pentium IV, 2 GHz personal computer with 1 Gbyte 

of RAM.  We set all cost ratios using the smallest integers possible, and set the relative 

optimality criterion to 0.0%, but the absolute optimality criterion to 0.99.   

We randomly generate scenarios by drawing demands from a discrete uniform 

distribution between 0 and 8 (details on test cases appear in Appendix C).  All of the 

scenarios are equi-probable, and the probability threshold in each period requires us to 

satisfy all but one scenario in each case.  We refer to a complete specification of the 

parameters required to solve FFAM as an instance.  We generate several instances from 

each case specification by varying the cost ratio.  Not only does this change the objective 

function and result in different optimal solutions, but the computational effort required to 

solve the different instances changes as well.  We obtain the parameters required for the 

specialized constraints by solving one instance each of RFFAM-sp, RFFAM-spII, and 

RFFAM-lb.  The auxiliary models solve very quickly, so we ignore this computational 

effort when presenting results. 

Table 1 summarizes the computation time of both FFAM and RFFAM for the 

four cases examined.  For each case, we list the number of ships involved, and number of 

period-I and period-II scenarios.  For each instance, we report the solution time, in 

seconds, for FFAM and RFFAM.   

The table shows that FFAM’s run-time performance is too slow for many 

practical instances, which may have as many as fifteen ships, and often more than ten 

scenarios in each period.  RFFAM outperforms FFAM in every one of the instances 

presented, usually by several orders of magnitude.  In fact, RFFAM solves every 

instance but one in less than 3 seconds.  In that instance (case 2c, with cost ratio 0.5) a 

solution within 3% optimal is found in less than one second.   



31 

 

  ( )1 2,c c  

(2,1) (1,1) (1,2) 
Case Name ( )I II, ,n S S  

FFAM RFFAM FFAM RFFAM FFAM RFFAM 

Case 2a (3,3,3) 4.437 0.359 21.42 0.249 11.47 0.249 

Case 2b (4,4,4) 393.6 0.656 111.6 1.453 146.3 0.328 

Case 2c (5,5,5) >3600a 98.59 >3600b 2.812 730.8 2.046 

Case 2d (6,6,6) 2511.2 0.874 >3600c 1.374 2839.1 1.473 

Table 1. Comparison of FFAM and RFFAM Computation Times. 

The table lists the amount of time, in seconds, required by CPLEX, 
version 9.0, to solve various instances of FFAM and RFFAM.  The top 
row lists the cost coefficients used.  Each subsequent row lists the times 
required for that instance.  Case size is specified by three parameters, 

( )I II, ,n S S .  Each scenario is equi-probable, and one scenario in each 

period may be unsatisfied.  Instances that do not solve in an hour are 
indicated by >3600, and the remaining relative gaps are as follows:  
a) 4.23%.  b) 2.22%.  c) 6.28%. 

 

Although RFFAM is much faster than FFAM, its run times are less predictable 

than FFAM’s and may become excessive.  As is apparent from the table, RFFAM 

requires more time to solve the instances of case 2c than those of case 2d for equivalent 

cost ratios, although case 2c has fewer ships and scenarios.  In fact, instances of 

comparable size can be found, for which the solver is unable to report an optimal solution 

following one hour of computation (case 2e with costs (2,1)).  In a larger instance, 

involving 8 ships and 8 scenario in each period (case 2f with costs (1, 1)), the solver fails 

to even identify any feasible integer solution in the allotted time.  Ultimately, we believe 

RFFAM is not a reliable option for solving practical instances of CCNIM. 

 



32 

D. CONCLUSIONS 

This chapter has developed CCNIM, the two-period chance-constrained 

inventory model for naval surface warfare.  The model is a relatively complex three-stage 

stochastic program.  We also formulate the deterministic-equivalent RFFAM, an 

improved formulation over FFAM, which was developed in Avital [2004].  Solution 

times for RFFAM are substantially better than for FFAM, but neither model can reliably 

solve problems of practical size.  In the following chapters, we develop alternative, faster 

solution techniques. 

 

 



33 

III. THE MONOTONIC ASSIGNMENT POLICY 

We introduced the MAP in Chapter II, which is the mission allocation policy that 

assigns targets with larger demands to ships with larger inventories, in part, to improve 

the solution times for the IP models.  More important than improving solution times, we 

believe the MAP is a reasonable approximation of how actual assignments should and 

would be carried out because assigning targets according to the MAP guarantees that all 

the missions are satisfied, if that is at all possible.  Furthermore, the MAP guarantees the 

lowest cost solution to any single-period problem, so it is also logistically efficient.  For 

these reasons, we believe that the MAP should be implemented in any algorithm that 

calculates a procurement and allocation plan for naval surface warfare, and formulate 

CCNIM-MAP, a restriction of CCNIM that incorporates MAP constraints.   

 

A. OPERATIONAL PROPERTIES OF THE MAP  

We identify three properties of a MAP, which hold for any given allocation. 

Property 3.1:  A MAP minimizes the maximum shortage over all targets in any 
scenario.   

Property 3.2:  A MAP satisfies any single-period scenario that can be satisfied by 
a given set of inventories. 

Property 3.3:  A MAP expends the greatest number of missiles in any scenario (a 
desirable characteristic when planning procurement, as we explain later). 

We proceed to prove these properties in several lemmas, below. 

Because each property depends only on the relation of a set of ships’ inventories 

to the ships’ assigned missions, we assume, without loss of generality, that the 

inventories are non-increasing, i.e., 1 2 nv v v≥ ≥ ≥ , for ships 1, ,i n= … .  Let 

( )1,...,
n

nd d += ∈d  represent the demands of an arbitrary scenario.  There are !n  

permutations of the elements of d .  Let { }1,..., !n=K  be the index set of all permutations, 

and let ,k k ∈d K , denote the kth permutation of d .  We denote the monotonically ordered 

demand vector by ∗d , and let k∗  denote some corresponding permutation index.  Note 

that ∗d  is unique, although, due to ties in the data, there may be several corresponding 



34 

permutation indices.  We represent alternative assignment plans by different permutations 

of the demand vector, indexed by k, and assign demand k
id  to ship i .  

 

Lemma 1. 

Let n
+∈v  be a non-increasing vector.  Let n

+∈d  be a vector of demands, and 

let ∗d  be a permutation of d  whose components are non-increasing.  Let 

{ }maxk k
i i

i
d vδ

+
= −  denote the greatest single-target shortage associated with the 

assignment plan represented by kd .    Then mink k

k
δ δ

∗

∈
=

K
.   

Proof: 

Let argmin k

k

k δ
∈

∈
K

, and suppose that k ∗≠d d .  Then, there exist demands l and m 

such that l m<  and k k
l md d< .  Consider k ′d , an alternative permutation of d , in which  

            k k
m ld d′ =   (3.1) 

            k k
l md d′ =   (3.2) 

            ,k k
i id d i l m′ = ∀ ≠ .  (3.3) 

Let ( ) { }
,

, maxk k
i i

i l m
l m d vε

+

≠
= − .  Then, ( ){ }max , , ,k k k k

l l m ml m d v d vδ ε= − −  and 

( ){ }max , , ,k k k k
m l l ml m d v d vδ ε′ = − − .  By our assumptions, we have k k

m l m md v d v− ≤ −  

and k k
l m m md v d v− < − , so k kδ δ′ ≤ .   

If k ′ ∗≠d d , set k k ′= , and find a new permutation k ′d  that satisfies conditions 

(3.1)-(3.3).  Because K  is finite and each k′  indexes a different permutation of d , the 

sequence of permutation indices ( ), ,...,k k k κ′  must reach ∗d  without increasing kδ .  █ 

The proof of the following corollary is then obvious. 



35 

Corollary 1. 

Let n
+∈v  be a non-increasing vector.  Let n

+∈d  be a vector of demands, and 

let ∗d  be a permutation of d  whose components are non-increasing.  If k≥v d  for some 

permutation index k, then ∗≥v d . █ 

Lemma 1 formalizes property 3.1, i.e., that a monotonic plan always minimizes 

the maximum single-target shortage.  In particular, that shortage is zero in satisfied 

scenarios.  This leads directly to Corollary 1, which implies that if any successful 

assignment plan exists, then a monotonic plan is successful as well. 

As an example of Lemma 1, consider a situation with three targets, corresponding 

demand vector ( )4,4,2=d , and an inventory vector for three shooters of ( )4,3,1=v .  

Under a MAP, the ith target is assigned to the ith ship, 1, 2, 3i = .  The maximum single-

target deficiency is one missile.  If the commander were to switch the last two 

assignments, the second ship would not use its entire inventory, but the second target 

would be engaged with only a single missile, increasing the maximum deficiency to three 

missiles. 

Finally, Lemma 2 proves property 3.3, i.e., that adhering to the MAP guarantees 

expending at least as many missiles in any scenario as any other assignment plan, without 

engaging any target with more missiles than it requires, of course.  As a result, if a 

different assignment plan is chosen for any reason (for example, when the assumption of 

full-flexibility does not hold), the total number of missiles left over from period I does 

not decrease.  However, the number of remaining missiles on each ship may be different 

following an alternative assignment.  Therefore, some ships may now carry more missiles 

than they require in period II, while other ships need to replenish more missiles than 

originally planned.  Because of the no-transshipment policy, the depot inventory may 

now be insufficient for period II.  However, by recalling some “overstocked” ships to 

port and violating the no-transshipment policy, we are guaranteed to have enough 

missiles to meet the period-II required allocations.  This violation may occur naturally, 

because  some  overstocked  ships  may be recalled to port for other purposes.  Although  



36 

property 3.3 does not directly affect the efficiency of any algorithm, it implies additional 

robustness for a procurement solution provided by CCNIM, and further motivates the 

use of a MAP.   

 

Lemma 2. 

Let n
+∈v  be a non-increasing vector.  Let n

+∈d  be a vector of demands, and 

let ∗d  be a permutation of d  whose components are non-increasing.  Let 

{ }min ,k k
i i iv dη =  be the number of missiles fired by ship i  associated with the 

assignment plan represented by kd .  Then 
*

maxk k
i i

k
i i

η η
∈

=∑ ∑
K

. 

Proof: 

Let argmax k
i

k i

k η ′

′∈
∈ ∑

K

, and suppose that k ∗≠d d .  Then, there exist demands l and 

m such that l m<  and k k
l md d< .  Consider k ′d , an alternative permutation of d  that 

satisfies conditions (3.1)-(3.3).  We obtain 

{ } { } { } { }min , min , min , min ,k k k k k k
i i l l m m l l m m

i i

v d v d v d v dη η′ ′ ′   − = + − +   ∑ ∑ . (3.4) 

Because we assume l mv v≥  and k k
l md d< , there are six cases to examine: 

• If k
m mv d≥ , then equation (3.4) reduces to 0k k k k

m l l md d d d   + − + =    . 

• If k
l lv d≤ , then we are left with [ ] [ ] 0l m l mv v v v+ − + = . 

• If k k
l m m lv d v d≥ ≥ ≥ , we have 0k k k k

m l l m m md d d v d v   + − + = − ≥    . 

• If k k
l m l mv d d v≥ > ≥ , we have 0k k k k

m m l m m ld v d v d d   + − + = − >    . 

• If k k
m l l md v d v≥ ≥ ≥ , we have [ ] 0k k

l m l m l lv v d v v d + − + = − ≥  . 

• If k k
m l m ld v v d≥ ≥ ≥ , we have 0k k

l l l m l mv d d v v v   + − + = − ≥    . 



37 

If k ′ ∗≠d d , set k k ′= , and find a new permutation k ′d  that satisfies conditions 

(3.1)-(3.3).  Because K  is finite and each k′  indexes a different permutation of d , the 

sequence of permutation indices ( ), ,...,k k k κ′  must reach ∗d  without decreasing k
i

i

η∑ .  █  

 

B. OPTIMAL SOLUTION TO CCNIM-sp 

This section proves that, assuming the shooters can be listed such that v  and v  

are both non-increasing, then assigning targets according to the MAP guarantees an 

optimal solution to CCNIM-sp.  We believe this assumption is reasonable in practical 

situations, as will be discussed below.  The optimality of the MAP in single-period 

problems is significant because, by applying the MAP, CCNIM-sp is reduced to a PIP.  

The specialized algorithm for solving CCNIM, which we develop later in this 

dissertation, can then take advantage of the properties of PIPs to solve problems quickly.  

To prove that assigning targets according to the MAP is optimal for instances of 

CCNIM-sp, we first prove that the MAP is optimal for the Flexible Minmax Subset 

Problem (FMSP).  FMSP is a combinatorial problem that is based on the Minmax Subset 

Problem (MSP) defined by KPP [2004].  We obtain FMSP by eliminating the capacity 

constraints (2.3) in CCNIM-sp.   

Let ( )1 ,..., n
s s nsd d += ∈d Z  denote a demand vector for scenario s ∈S  with 

associated probability 0sϕ > .   Let { }1,..., !s n=K  be the index set of all permutations of 

sd , and let ,sk
s s sk ∈d K , denote the vector induced by the kth permutation of sd .  Let 

( )1,...,k k=k S  denote a vector of permutation indices, one for each scenario, which we 

refer to as an arrangement indicator.  Let { }sk
s

s

=k dD ∪ , and let kA =∪ .  Note that 

( )!n= S
A . 

A subset of scenario indices f ⊆S S  is said to be p-feasible for a given probability 

parameter p if 
f

s
s

pϕ
∈

≥∑
S

.  Let F |
f

f s
s

pϕ
∈

  = ≥ 
  

∑
S

S S  denote the set of p-feasible subsets. 



38 

Let ( ) max s

f

k
i f is

s
d d

∈
=k

S
S ; the vector kd  exactly prescribes the largest demand that each 

ship will need to satisfy in the scenarios that comprise the p-feasible subset.  Also, define 

( ) ( )
1

,
n

f i f
i

D d
=

=∑ kkS S .  We now define FMSP precisely: 

Definition:  FMSP (Flexible Minmax Subset Problem):  Find a p-feasible subset S  and 

associated arrangement indicator k  such that ( ) ( )
F ,

, min ,
f

fD D
∈

=
k

k k
S S

S S ; we refer to S  as 

a “minimal p-feasible subset.”  █  

We may also formulate FMSP as:  

                     ( )
F ,

1

, min max s

f f

n
k
is

s
i

D d
∈ ∈=

= ∑
k

k
S S S

S  (3.5) 

                             s.t.        
f

s
s

pϕ
∈

≥∑
S

 

Let { }M | ,s sk k
is jsd d i j s= ≥ ∀ < ∀ ∈kA S  be the set of arrangement indicators where 

each vector sk
sd  is non-increasing.  Because monotonic orderings are unique to within ties 

in the data, the vectors sk
sd  and their upper-bounding vector kd  are unique, regardless 

which M∈k A  is used.  We denote these vectors by s
∗d  and ∗d  respectively, by ∗D  the 

arrangement of s
∗d , and by ∗k  some M∈k A .  (If the data exhibit no ties, then 

{ }M
∗= kA .)  Furthermore, let { }MM | i jd d i j= ≥ ∀ <k kkA  be the set of arrangement 

indicators for which the elements of the resulting vector of maxima kd  form a non-

increasing sequence (“MM” stands for “monotonic maxima”).  For notational 

convenience, we drop the set argument if ( )id k S  is calculated over the entire set S .  

Clearly, M MM⊆ ⊆A A A . 

We proceed to prove that solving FMSP using a fixed arrangement ∗D , 

corresponding to a monotonic plan, yields the same optimal value as an unrestricted 

solution of FMSP, i.e., ( ) ( )
F F ,

min , min ,
f f

f fD D∗

∈ ∈
=

k
k k

S S S S
S S . 



39 

Lemma 3. 

Let { }s
s

= dD ∪  be a set of demand vectors, and let ∗D  be an arrangement of those 

vectors in which s
∗d  is non-increasing for all s .  Recall that max sk

i i
s

d d
∈

=k

S
, and let 

maxi i
s

d d∗ ∗

∈
=

S
.  Then 

MM

mini id d i∗

∈
= ∀k

k A
. 

Proof:  

We prove the lemma by showing that there is a sequence of arrangement 

indicators leading from any MM∈k A  to some ( )
M

κ ∈k A , where each successive 

arrangement, obtained by interchanging elements in a permutation of a single scenario, 

maintains the relation 
( )κ

≥ ≥k kd d . 

Let 
MM

argmin id
∈

∈ k

k
k

A

, and suppose that M∉k A .  Then, there exist scenario t  and 

demands l  and m  with l m<  and t tk k
lt mtd d< .  Consider ′kD , an alternative arrangement of 

kD , in which  

            t tk k
mt ltd d′ =   (3.6) 

            t tk k
lt mtd d′ =   (3.7) 

            , if and ifs sk k
is isd d i l m s t i s t′ = ∀ ≠ = ∀ ≠ . (3.8) 

Let { }t t= −S S , and note that ( ){ }max , tk
i i t itd d d i= ∀k k S .  By our assumptions, 

l md d≥k k  and t tk k
lt mtd d< .  Because tk

m mtd d≥k , we obtain ( ) tk
l l t ltd d d= >k k S  and tk

l mtd d≥k .  

Therefore, ( ){ } ( )max , tk
l l t mt l t ld d d d d′ = = =k k k kS S .  Because t tk k

mt mtd d′ < , we get 

m md d′ ≤k k , and, considering that { },i id d i l m′ = ∀ ≠k k , we obtain i id d i′ ≤ ∀k k . 

Because m md d′ ≤k k , ′kd  may no longer be monotonic and it may be true that 

MM′∉k A .  Let { }argmax m i
i m

j d d′ ′

>
= <k k .  If j ≠ ∅ , let the arrangement indicator 1k  be 

such that 
1

1,
s sk k

is i sd d ′
+=  1,m i j s∀ ≤ ≤ − ∀ , 

1
s sk k

js msd d s′= ∀ , and 
1
s sk k

is isd d ′=  ,i m i j s∀ < ∨ > ∀ .  



40 

Thus, we are effectively permuting the entries of ′kµ  without changing their values.  

Because 1i id d i m′ ′
+≥ ∀ >k k  and j md d′ ′≥k k , we have 1

MM∈k A , and set 1′ =k k .  

If M′∉k A , set ′=k k , and find a new arrangement ′kD  that satisfies conditions 

(3.6)-(3.8).  Because MMA  is finite and each ′k  leads to a different member of MMA  

(possibly through 1k ) the sequence of arrangement indicators ( ), ,..., κ′k k k  must reach 

some ( )
M

κ ∈k A , and 
( )κ ∗=kd d  by definition. █   

The proof of the following corollary is then obvious. 

 

Corollary 2. 

 Let ( )
1

,
n

i
i

D d
=

=∑ kkS .  Then ( ) ( )
MM

, min ,D D∗

∈
=

k
k k

A
S S . █ 

 

Lemma 4. 

For a fixed set of vectors D  and corresponding index set S , the arrangement 

{ }s
s

∗ ∗= dD ∪  minimizes the sum of component-wise maxima over all arrangements, i.e. 

( ) ( ), min ,D D∗

∈
=

k
k k

A
S S . 

Proof:  

Let ( )argmin ,D
∈

∈
k

k k
A

S , so ( ) ( ), ,D D ∗≤k kS S .  If MM∉k A , there must be 

indices l  and m  with l m<  and l md d<k k .  Consider ′kD , an alternative arrangement of 

D , in which 

            s sk k
ls msd d s′ = ∀   (3.9) 

            s sk k
ms lsd d s′ = ∀   (3.10) 

            ,s sk k
is isd d i l m s′ = ∀ ≠ ∀ .  (3.11) 



41 

In effect, the arrangement ′kD  switches two components of kd  so that l md d′ =k k , m ld d′ =k k  

and { },i id d i l m′ = ∀ ≠k k .  Obviously, the equality ( ) ( ), ,D D′ =k kS S  holds. 

If MM′∉k A , set ′=k k , and find a new arrangement ′kD  that satisfies conditions 

(3.9)-(3.11).  Because A  is finite and each ′k  leads to a different member of A  the 

sequence of arrangement indicators ( ), ,..., κ′k k k  must reach some ( )
MM

κ ∈k A  such that 

( )( ) ( ), ,D Dκ =k kS S .  By Corollary 2, ( ) ( )( ), ,D D κ∗ ≤k kS S , and so, by our initial 

assumption, ( ) ( ), ,D D ∗=k kS S . █ 

 

Theorem 1. 

Let S  and ∈k A  be an optimal solution of FMSP.  Let M
∗ ∈k A  and let 

( )
F  

argmin ,
f

f fD∗ ∗

∈
∈ k

S S

S S .  Then ( ) ( ), ,fD D∗ ∗ =k kS S . 

Proof: 

By assumption, ( ) ( ), ,fD D ∗ ∗≤k kS S .  Consider the arrangement ∗D  and the 

resulting ( ) ( )
1

,
n

i
i

D d∗ ∗

=
=∑kS S .  Lemma 4 implies that ( ) ( ), ,D D ∗≥k kS S , and 

( ) ( ), ,fD D∗ ∗ ∗≥k kS S  follows from ( )
F  

argmin ,
f

f fD∗ ∗

∈
∈ k

S S

S S , so ( ) ( ), ,fD D ∗ ∗=k kS S . █ 

Note that the results of Theorem 1 are invariant to row permutations on ∗D .  More 

accurately, let ( )π i  denote a specific permutation.  If for every sk
s ∈ kd D , ( )sk

s sπ ∗=d d , 

then ( ) ( ), ,f fD D∗ ∗ ∗=k kS S . 

We now obtain the conditions required to extend Theorem 1 to CCNIM-sp.  The 

theorem states that solving FMSP on a set of ordered scenarios yields ∗d , where 

{ }Pr s p∗ ∗≥ ≥d d , and T ∗1 d  is minimal.  Obviously, if there is some ordering of the ships 

for which ∗≤ ≤v d v , then we could set ∗ ∗=v d , and ∗v  would be an optimal solution to 



42 

CCNIM-sp.  If that condition does not hold, we require some transformation from an 

optimal solution of FMSP to that of CCNIM-sp. 

We consider the effect of the lower bounds first.  It is easy to see that if ∗≤/v d , 

then setting { }max ,∗=v d v  may not solve CCNIM-sp optimally.  For example, consider 

the case where only one of the two scenarios (5,1) and (4,3) must be successfully 

covered, and ( )3,3=v .  Then ( )5,1∗ =d  leads to the allocation (5,3), but the optimal 

solution to CCNIM-sp is (4,3).   

We transform the data pertaining to FMSP to obtain an optimal solution that 

satisfies the lower bounds.  If D , φ, and p  define an instance of FMSP, then we label by 

FMSP-lb an instance of FMSP on the following data (marked by the prime symbol): 

′ vD =D∪ , 0.5ϕ′ =v , 0.5s s sϕ ϕ′ = ∀ ∈S , and ( )0.5 1p p′ = + .  By Theorem 1, we arrange 

′D  monotonically and obtain an optimal solution ∗′d  and associated minimal p′ -feasible 

subset f
∗′S .  Because s

s

pϕ
∈

′ ′<∑
S

, we must have f
∗′∈v S , so ∗′≤v d .  Because 

0.5s s sϕ ϕ′ = ∀ ∈S  and 0.5p pϕ′ ′− =v , we have 
f

s
s

pϕ
∗′∈

≥∑
S

 so { }f
∗′ − vS  is a p -feasible 

subset in FMSP.  Therefore, we may set ∗′=v d  as an optimal solution of CCNIM-sp as 

long as we list the ships monotonically by lower bound, such that 1 ,..., nv v≥ ≥ , and 

∗′ ≤d v .  But, we already assume that every scenario is feasible, i.e. there is some 

permutation of the demands sYd  that satisfies the inequality sY≥v d .  By Corollary 1, if 

v  is also non-increasing, then s s∗≥ ∀v d . 

We conclude that if an ordering of the ships exists where v  and v  can be non-

increasing simultaneously, we can optimally solve CCNIM-sp as a simpler single-stage 

problem by ordering the demand vectors monotonically a priori.  If such an ordering 

does not exist, then, by ordering the ships such that v  is non-increasing, we guarantee 

that the solution of FMSP-lb is a feasible solution of CCNIM-sp.  It seems reasonable to 

assume that both bounds be non-increasing simultaneously, because the lower bounds are 

generally fixed for all ships, or are set proportionally to the capacities.  Note that the 



43 

resulting allocation plan may not be unique, as there may be alternative plans of equal 

cost that satisfy a different subset of scenarios.  From this point forward, we assume that 

ships are listed monotonically by capacities, that the lower bounds vector is monotonic, 

and that all demand vectors are monotonically ordered unless otherwise specified.   

Of course, the MAP constitutes a restriction of CCNIM, and may increase the 

cost of an optimal solution through an increased depot inventory.  When calculating the 

procurement requirements by CCNIM, an unrestricted assignment plan may assign ships 

with low inventories to high-demand missions in period I in order to spare missiles for 

period II in scenarios we do not intend to satisfy.  Furthermore, a different assignment 

plan alters the numbers of missiles remaining on individual ships in satisfied scenarios, 

and may reduce the number of missiles left on ships where they are not required in period 

II.  For these two reasons, assignments that lead to a smaller depot requirement may be 

found if the MAP is not enforced.   

Returning to the example that follows Lemma 1, consider the situation with three 

targets, corresponding demand vector ( )4, 4, 2=d , and an inventory vector for three 

shooters of ( )4,3,1=v .  Under the MAP, no ship has any missiles left following the 

engagement, but the scenario is not satisfied.  If the commander were to assign the target 

requiring two missiles to the ship carrying four missiles, then there would be two missiles 

left following the engagement.  These missiles could reduce the depot requirement for 

period II.  However, as mentioned in Chapter II, it appears that in many cases a 

monotonic plan is optimal for CCNIM. 

 

C. CCNIM-MAP 

Because enforcing the MAP is desirable from an operational perspective, and the 

cost of its enforcement appears to be small, we modify CCNIM to incorporate the MAP 

in “CCNIM-MAP”: 

       



44 

 (CCNIM-MAP)  
I II I

I II
1 2

, ,
min

x x
c x c x+

v
  (3.12) 

                         s.t. 

                { }I I IPr p≥ ≥v d   (3.13) 

                    I I 0T x− =1 v   (3.14)  

                               I≤ ≤v v v   (3.15) 

                              I n
+∈v   (3.16) 

                   where   ( )I I +
≡ −r v d   (3.17) 

                             ( )( )II I
II, |F≡ +v r w r di  (3.18) 

        and where ( ) n
+∈w i  is chosen such that  

          ( ){ }II II II II II I
MAPPr sY p s≥ ≥ ∀ ∈v v d S   (3.19) 

          ( )( )I II
II, | 0T F x− ≤1 w r di   (3.20) 

                         ( )( )I
II, |F− ≤ ≤ −v r w r d v ri  (3.21) 

        where  ( ) ( ) ( ){ }II 1 1
MAP 1

arg 0 1
i iY

Y Y Y i n− −

+∈
∈ − ≥ ∀ ≤ −v v v

Y

 (3.22) 

            and with these restrictions on the data:  

                                         I I I
1, 1,is i sd d i n s+≥ ∀ ≤ − ∀ ∈S  (3.23) 

                                        II II II
1, 1,is i sd d i n s′ ′+ ′≥ ∀ ≤ − ∀ ∈S . (3.24) 

                              1 1i iv v i n+≥ ∀ ≤ −   (3.25) 

CCNIM-MAP is only a two-stage model, and is, therefore, simpler than 

CCNIM.  The flexibility in target assignment allows us to preprocess the demand 

vectors, and order each one monotonically.  We assign demand I
isd  to ship i  in every 

period-I scenario, and calculate the remaining inventory ir  on each ship.  As in CCNIM, 

we then decide the number of missiles II
iw  to add to each ship’s inventory for period II.  

This determines IIv , the period-II inventories.  To enforce the MAP, some permutation 

( )II
MAPY v , which assigns larger demands to ships with larger inventories, must be 



45 

determined.  Because demands are ordered monotonically, this permutation is simply the 

inverse of the permutation, which arranges the ships inventories in non-increasing order.  

An inverse of a permutation matrix is well defined, because its determinant is either 1 or 

–1.  The remainder of this dissertation is dedicated to finding practical solution methods 

to CCNIM-MAP. 



46 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 



47 

IV. IDENTIFYING OPTIMAL SOLUTIONS 

The IP model RFFAM may fail to reach an optimal solution in a reasonable 

length of time for problem instances that involve more than a few ships and/or scenarios, 

depending in the case specifications and the cost ratio used.  Therefore, this chapter 

explores the properties of feasible solutions of CCNIM-MAP, and identifies several 

specific “points of interest,” i.e., a small set of potentially optimal solutions that 

correspond to optimal solutions for certain cost ratios.  These points may be found by 

solving instances of RFFAM-sp and restrictions of RFFAM.  However, these methods 

prove unreliable, so in the next chapter we develop a specialized algorithm to identify 

these points based on the properties of PEPs. 

 

A. STRUCTURE 

The objective function (3.12) is the weighted sum of two variables, Ix  and IIx , 

where Ix  is the total number of missiles assigned to the ships in the period I, and IIx  is 

the number of missiles stored at the depot.  We define an integer pair ( )I II,x x=x  to be 

feasible if there exist missile allocations and target assignments that satisfy the 

probability requirements in CCNIM-MAP, with corresponding values of Ix  and IIx .  

Because the objective function is entirely determined by the value of x , we go as far as 

to refer to x  as a solution to CCNIM-MAP in the following text (although knowing x  

does not reveal all of the other variables involved).  All other variables are treated as 

secondary, and are needed only to assess the feasibility of x .  We refer to the value of the 

point x  as I II
1 2c x c x= +cx .  In much of the following discussion, we refer to Ix∗  as a 

first-period optimal solution and to the integer pair ( )I II,x x∗ ∗ ∗=x  as an optimal solution of 

the full problem.  

We define the quasi-feasible region for CCNIM-MAP, 2
+⊂F , as the set of all 

feasible integer pairs ( )I II,x x .  We bound F  by aggregating the individual ship-capacity 

constraints.  Combining these with the lower bounds obtained for Ix  and IIx , and the 



48 

non-negativity restriction on IIx , we conclude that F  is contained within the rectangle 

defined by I I Tb x≤ ≤ 1 v  and II II0 max s
s

x b≤ ≤ .  Note that IIx  is not explicitly bounded in 

CCNIM-MAP, but will not exceed IImax s
s

b , the greatest number of missiles we may 

need in period II, in any actual solution.  

We also define the following subset of F ,  

 ( ) ( ) ( ) ( ) ( ){ }I II I II I II I II, | , , 1, , , 1x x x x x x x x≡ ∈ − ∉ − ∉O F F F F . (4.1) 

Only the points in ( )O F  are potentially optimal, because both points ( )I II1,x x−  and 

( )I II, 1x x −  have a lower objective value (assuming positive costs) than ( )I II,x x .  If 

either of those solutions is feasible, then it is obviously preferable to ( )I II,x x .  In other 

words, any optimal solution of CCNIM-MAP must be Pareto optimal [Rardin 1998, p. 

379] with respect to the two variables Ix  and IIx .  To solve CCNIM-MAP, we only need 

to identify which ( )∈x O F  is optimal, and in many cases we can do so without solving 

RFFAM. 

We explore the properties of ( )O F  to find features that will lead us to specialized 

algorithms.  KPP use a specialized decomposition algorithm to solve CCGIM, so we 

begin our exploration by examining the structure of ( )O F  for that model, which is 

simpler than CCNIM-MAP.  In CCGIM, safety stocks exist that must be replenished, if 

used, and units may transship between themselves at the end of period I.  Because of the 

safety stocks, for any given period-I scenario, all allocation plans expend the same 

amount of ordnance.  Furthermore, KPP prove that every two-period optimal solution 

requires the same amount of ordnance in total.  It is clear that ( )O F , in the KPP setting, 

is a line segment in 2
+ , maintaining the relation I IIx x const+ = . 

The geometric view provides further intuition into the correctness of the KPP 

decomposition procedure.  KPP seek the point 
( ) ( )I II

I

,

argmina
x x

x
∈

≡x
O F

, which is the potentially 

optimal point that minimizes the number of missiles in the initial (period I) ship 



49 

allocation.  They obtain it by decomposing the two-period model into two separate one-

period problems, which they solve sequentially.  In the first problem, they minimize I
ax , 

the amount of ordnance allocated to the units in order to satisfy demands in the first 

combat period with a specified probability.  The specific period-I allocations are used as 

parameters in the period-II problems, where KPP minimize the amount of ordnance to be 

added to the units’ inventories from the depot T
s1 w  following each possible period-I 

scenario s.  By following this procedure, they obtain { }II max T
a s

s
x = 1 w .  By the 

assumption that 1 2c c≥ , ax  must be globally optimal for CCGIM.   

The structure of ( )O F  may be more complex in the case of CCNIM-MAP.  We 

define several specific integer pairs, and show which of these are optimal under which 

circumstances.  As above, let 
( ) ( )I II

I

,

argmina
x x

x
∈

≡x
O F

 be the potentially optimal point that 

minimizes the number of missiles in the initial (period I) ship allocation, and let 

( ) ( )I II

II

,

argmind
x x

x
∈

≡x
O F

 be the potentially optimal point that minimizes the number of missiles 

stored in the depot.  Let ( )
( ) ( )I II

I II

,

argmin
x x

x x
∈

≡ +
O F

Χ F  be the set of points that minimize the 

total number of missiles. 

By these definitions, it is obvious that in cases where there is a clear preference 

for allocation strategy, that is, when the ratio 2 1/c c  is very different from 1, we seek 

either the point ax  or the point dx  as the optimal solution.  (It is difficult to determine 

how large or small “different from 1” must be without solving CCNIM-MAP.)  When 

2 1/ 1c c = , any point ( )∈x Χ F  is an optimal solution.  When the cost ratio is set such that 

2 1/ 1c c ≈ , then identifying the optimal points in ( )O F  may be more difficult. 

The first point of note is that ax  may not belong to ( )Χ F , in which case it is not 

optimal when 1 2c c= .  As an example, consider case 4a in table 2, which has five combat 

ships, { }I
1 2 3, ,s s s=S  and { }II

4s′=S .  In this case, (7,2)a =x  because seven missiles are 



50 

enough to satisfy scenario 1s  and meet the probability requirement.  If that scenario 

actually occurs, we will have no inventory carried over into period II, so two missiles are 

needed in the depot.  Increasing the period-I allocation total to eight allows the period-I 

allocation ( )I 2,2,2,1,1=v , which covers scenarios 2s  and 3s .  If either of these scenarios 

occurs, we obtain the (reordered) remainder vectors (1,1,0,0,0) or (1,1,1,0,0), 

respectively, both of which satisfy the period-II requirement without requiring any 

additional missiles.  If scenario 1s  occurs, the remainder is (2,2,1,1,0).  Hence we have 

the optimal solution ( )8,0 , which requires one missile less, in total, than ax . 

The reason that ax  may not belong to ( )Χ F  is that a ship carries no safety stock.  

Therefore, the number of missiles expended in unsatisfied scenarios depends on the 

allocation.  Furthermore, adding missiles to the ships’ inventories in period I relaxes the 

limitations on the scenarios we may choose to satisfy in that period.  We may now choose 

a different allocation plan, requiring more than I
ax  missiles, that uses fewer missiles in 

the unsuccessful period-I scenarios, thereby saving more missiles for period-II and 

lowering the requirement for depot stockpile.  The difference between the depot 

requirements may exceed the difference between the total period-I allocations.  We refer 

to this effect as the no-safety-stock effect in future discussion. 

The reader may correctly assume that an enumeration procedure, which generates 

every Ip -feasible subset, can overcome these difficulties.  Such an algorithm, however, is 

inefficient compared with the algorithm we provide in the next chapter, and solves 

CCNIM-MAP only for cost ratios where 2 1/ 1c c ≤ .  We detail such an algorithm in 

Appendix D. 

 



51 

sϕ  (0.5, 0.25, 0.25) 

|s sϕ ′  1 Is S∀ ∈  

Ip  0.5 

II
sp  1  

msd  

Is ∈S  
IIs′∈S  

1 2 3 4

1

2

3

4

5

                          

       7      2      1      1 

       0      2      1      1 

       0      2      1      0 

       0      0      1      0 

       0      0      1      0 

s s s s

m

m

m

m

m

′

 

iv  0 i∀  

iv  8 i∀  

Table 2. Case 4a - Example Where ( )a ∉x Χ F . 

The table lists the probabilities of each scenario ( |,s s sϕ ϕ ′ ), the success 

thresholds specified for each period ( I II, sp p ), the demands associated 

with the various missions in each scenario msd , and the capacity limits 

imposed on each ship ( ,i iv v ).  A minimum period-I allocation leads to the 

solution ( )7,2a =x .  If we allow 8 missiles to be allocated to the ships in 

the first period, we can choose an allocation that satisfies the scenarios 2s  

and 3s , instead of scenario 1s .  The remaining inventory following any of 

the three scenarios will satisfy scenario 4s′ .   

 

The no-safety-stock effect causes a second difficulty in the analysis of ( )O F .  

CCNIM-MAP assumes that ships will expend their entire inventory when the assigned 

demand exceeds that inventory.  Increasing the allocation to any such ship will increase 

the number of missiles it expends in such a scenario.  However, if the original allocation 

plan was already Ip -feasible, then increasing it constitutes a “waste” of missiles (from 

the logistics point of view), because those missiles will not necessarily reduce the depot 



52 

requirements for period II.  Thus we may have cases where ( )I II,x x ∈F , but 

( )I II1, 1x x+ − ∉F . 

The point dx  may also not belong to the set ( )Χ F , due to the no-safety-stock 

effect, as well as the no-transshipment effect.  The no-transshipment effect arises 

because, following period I, the number of missiles remaining on some ships may exceed 

the number of missiles actually required by them to satisfy period-II scenarios.  By 

assumption, these extra missiles are essentially wasted because they cannot be 

transshipped to other ships that may require them. 

We illustrate these effects by examining ( )O F  for case 4b in Table 3.  There, 

( ) ( )15,15a = ∈x Χ F , and the initial allocation of (5,4,4,2) satisfies every scenario but 4s , 

whose associated demand vector is (5,4,4,3) when ordered monotonically.  We also know 

that ( ) ( )18,12 ∈Χ F , and the reader may verify that (19,11) is not.  That is because there 

is no Ip -feasible allocation of 19 missiles that does not expend at least 16 missiles in any 

monotonic assignment plan if scenario 4s  occurs.  In fact, there are exactly five 

monotonic 19-missile allocations that would expend only 16 missiles, e.g., (7,4,4,4).  

There are three total missiles remaining following 4s , just as when we optimally allocate 

18 missiles.  Hence, the depot requirement, which is driven by 4s , is still 12, and the 

point (19,12) is feasible.  Note that ( ) ( )19,12 ∉O F  because ( ) ( )18,12 ∈O F , so the next 

point (in order of decreasing IIx ) that belongs to ( )O F  is (20,11), and the sum of missiles 

expended has increased by one.  The reader may verify that a similar increase in total 

expenditure occurs from the point ( ) ( )26,5 ∈O F  to ( ) ( )28, 4 ∈O F , because 27 missiles 

cannot be allocated in period I without expending 17 missiles when scenario 4s  occurs.  

Thus, we require the same depot level as when we allocate 26 missiles optimally, and 

( ) ( )27,4 ∉O F . 

 



53 

sϕ  
2 1 1 1 1

, , , ,
6 6 6 6 6

 
 
 

 

|s sϕ ′  ( ) { }1 50.4,0.2,0.2,0.2 ,...,s s s∀ ∈  

Ip  0.83 

II
sp  0.8 s∀  

msd  

Is ∈S  

1 2 3 4 5

1

2

3

4

                              

       3      4      5      5      5

       3      3      4      5      4

       3      2      4      4      4

       0      1      2      3      1

s s s s s

m

m

m

m

 

msd  

IIs′∈S  

6 7 8 9

1

2

3

4

                              

       3      4      5      5

       3      3      4      5  

       3      2      4      4  

       0      1      2      3 

s s s s

m

m

m

m

′ ′ ′ ′

 

iv  2 i∀  

iv  8 i∀  

Table 3. Parameter Specifications for Case 4b.   

All labels defined as in Table 2. 

 

The increases in the number of missiles expended, shown above, result from the 

no-safety-stock effect.  Had there been some safety stock, which must be replenished, the 

ships would have expended 17 missiles whenever scenario 4s  occurred, regardless of the 

initial allocation.  It is perhaps counter-intuitive that optimal allocations do not satisfy 

every demand, even when enough missiles are allocated in total for that period. 

When minimizing IIx , it happens that ( ) ( )32,0 ∉O F  and ( )32,1d =x .  This 

further increase in total missile requirement results from the no-transshipment effect, and 

occurs when Ix  increases from 29 missiles to 30, requiring a depot inventory of 3 

missiles in both cases.  The period-II scenario specifications are independent of the 



54 

period-I scenarios, and II 15sb =  for all s , corresponding to the period-II minimal 

allocation of (5,4,4,2).  There are only two (monotonic) period-I allocations using 30 

missiles: (8,8,8,6) and (8,8,7,7).  If scenario 4s  occurs, the remainders are (3,3,4,3) and 

(3,3,3,4), respectively, which are essentially equivalent.  Three more missiles are 

required, in total, to increase the inventories of three ships to the requirement of the 

period-II minimal allocation, but the fourth ship, which requires an inventory level of two 

missiles, is also carrying three and has one in excess.  29 missiles can be initially 

allocated according to (8,8,8,5), leaving (3,3,4,2) missiles if scenario 4s  occurs, and still 

requiring a depot inventory of three missiles.   

Figure 2 gives a full mapping of ( )O F  for case 4b of CCNIM-MAP, based on 

the discussion above.  Based on the above analysis, we find all of the optimal solutions 

for any cost ratio, and summarize the results in Table 4.  Some solutions cover a span of 

ratios, while others are optimal for only a specific cost ratio; these latter solutions are 

never uniquely optimal.  The solutions obtained by solving different instances of case 4b 

in RFFAM, differentiated by cost-ratios, correspond to some of the points of interest in 

( )O F , as can be seen in Table 4. 

 



55 

 

Figure 2.   A Map of ( )O F  for Case 4b in Table 3.   

The figure shows every point belonging to ( )O F  when solving case 4b.  

Only these points could lead to optimal solutions of CCNIM-MAP.  
There are three occasions where ( )O F  breaks from linearity.  Two breaks 

occur due to the no-safety-stock effect, which results in no feasible 
solution to CCNIM-MAP if we use the total period-I allocation and depot 
inventory pairs (19,11) or (27,4).  The pair (30,2) also leads to no feasible 
solution of CCNIM-MAP, due to the no-transshipment effect. 

 



56 

2 1c c  Optimal Solutions, ( )I II,x x∗ ∗ ∗=x  RFFAM Initial Allocation 

<1 (15,15) (5,4,4,2) 

1.0 (15,15), (16,14), (17,13), (18,12) (8,4,4,2) 

1 8 7< <  (18,12) (8,4,4,2) 

8 7  (18,12), (26,5) (8,4,4,2) 

8 7 3 2< <  (26,5) (8,8,8,2) 

3 2  (26,5), (29,3), (32,1) (8,8,8,8) 

3 2>  (32,1) (8,8,8,8) 

Table 4. Optimal Solutions for Case 4b in Table 3.   

The “ 2 1c c ” column gives the cost ratio, thereby completing the definition 

of the instance.  The “Optimal Solution” column gives the optimal number 
of missiles to be loaded for period-I combat and the number of missiles to 
be stored for later use.  “RFFAM Initial Allocation” gives initial load-outs 
for the ships, as obtained by solving RFFAM for the corresponding 
instance of case 4b.  Notice there are several specific ratios that have 
multiple optimal solutions. 

 

Incidentally, if the cost ratio is greater than 1.5, the optimal solution (32,1) is a 

direct result of the MAP, and is of strictly higher cost than the optimal solution in the 

unrestricted case.  Consider the initial allocation (8,8,8,7), requiring a total of 31 missiles.  

If the targets of scenario 4s  are assigned according to (5,4,3,5), then the remainders are 

(3,4,5,2), and only a single extra missile must be stored at the depot.  For any other 

period-I scenario, no more missiles would be required.  Hence, the solution (31,1) is 

feasible, and costs less than ( )32,1d =x .  

Finally, note that loading the ships to full capacity guarantees that the resulting 

depot inventory is minimal.  However, it may be that ( )II,T
dk x− ∈1 v F  for some integer 

0k > , so the point ( )II,T
dx1 v  may not belong to ( )O F .  This can be caused by either the 



57 

no-transshipment effect or by the no-safety-stock effect because both effects cause 

portions of the convex hull of F  to parallel the Ix  axis. 

 

B. EXAMPLE OF RFFAM-BASED TECHNIQUES 

As observed in Chapter II, case 2f is difficult to solve by RFFAM.  In this 

section, we attempt to solve it for various cost ratios by exploiting our newly gained 

insight into the feasible region and by exploiting other techniques involving variations of 

RFFAM. 

The points ax  and dx  correspond to “preemptive” allocation policies that 

respectively minimize the total number of missiles allocated to the ships in period I, or 

minimize the number of missiles that are kept in the depot.   We can try to use RFFAM 

to identify ax  and dx  directly by setting extreme cost ratios.  However, even setting a 

cost ratio of 100 to 1, in either direction, does not yield an integer solution in one hour of 

computation. 

We may be able to identify ax  and dx  significantly faster by taking advantage of 

their preemptive nature.  The point ax  corresponds to a solution that minimizes the 

number of missiles allocated to ships in period I, and then minimizes the number of 

missiles held in inventory for that allocation.  We know that I I
ax b= , where Ib , the 

minimum feasible Ix , is obtained by solving RFFAM-sp.  Let ( )II Ix x  denote the value 

of IIx  in an optimal solution of RFFAM where Ix  is fixed.  Because IIx  is unbounded, a 

solution ( )II Ix b  must exist.  We expect that solving RFFAM with the added constraint 

IT b=1 v  will yield the point ( )( )I II I
a ,b x b=x  faster than by setting 2 1/ 1c c  in 

RFFAM.  However, for case 2f, an integer solution is not obtained in one hour even 

when RFFAM is restricted in that manner. 

If we prefer to reduce the operational burden of replenishment operations, we 

seek the solution dx , which first minimizes IIx  and then minimizes Ix .  To do so, we can 

solve RFFAM twice.  First, we fix an assignment plan that sets Ix  to its upper bound Ix  



58 

by fixing i iv v i= ∀ , so that each ship is loaded to capacity.  Solving RFFAM, we obtain 

( )II II I
dx x x= , the minimum depot inventory.  We now fix II II

dx x=  and solve RFFAM to 

obtain ( )( )I II II,d d dx x x=x , where ( )I IIx x  denotes the value of Ix  in the solution of 

RFFAM for a fixed value of IIx .  Obtaining a solution by this method should be 

significantly faster than simply solving RFFAM with 2 1 1c c  because the number of 

potential allocations is reduced.  When we fix the allocations of the 8 ships in case 2f to 

their upper bounds, we obtain the solution II 19x =  in 5.3 seconds of computation.  

However, when we solve RFFAM again, with the depot inventory fixed, no integer 

solution is found in one hour. 

Although the restrictions designed to yield ax  and dx  do not improve the 

performance of RFFAM significantly, we find other restrictions that do.  In particular, 

one restriction, denoted RFFAM-mII (“mII” stands for monotonic in period II), solves 

case 2f in less that one second for every cost ratio.  In RFFAM-mII, we restrict the 

period-II assignment variables by adding the constraints  

                  II I II0 , , , ( )ims su i m i s s s′ ′= ∀ ≠ ∈ ∈S S . (4.2) 

Recall that II
ims su ′  is set to 1 if ship i is assigned mission m in period-II scenario s′, 

following scenario s in period I, and 0 otherwise.  Because the targets have been 

monotonically ordered by demands, ship i is now assigned the ith largest demand in each 

period.  This restriction may not be optimal because it ignores the numbers of missiles 

remaining on each ship following period I. 

Lower bounds on the minimum number of missiles that must be procured to 

satisfy RFFAM can be found by relaxing the integrality constraints on some of the 

variables in RFFAM.  We suggest removing the binary requirement from the variables 

controlling period-II assignments.  An initial attempt to solve case 2f with [ ]II 0,1ims su ′ ∈  

yields no optimal solutions in one hour of computation, but when II
ims su ′  is unrestricted, an 

optimal solution is obtained in about four seconds for every cost ratio.  We refer to this 

model as RFFAM-rx (“rx” stands for relaxation).  RFFAM-rx solves significantly faster 



59 

than RFFAM itself, provides an integer allocation plan, and the optimal relaxed objective 

value provides a lower bound on the number of required missiles. 

For cost ratios that satisfy 2 1c c< , RFFAM-rx and RFFAM-mII yield the same 

initial allocation plan (8,7,7,6,5,4,3,2) and depot inventory (40), which can therefore be 

declared optimal.  When 2 1c c= , the plans are not identical, but are of equal cost.  

Therefore, we can declare the solution given by RFFAM-mII optimal.  When 2 1 2c c ≥ , 

however, the solutions of the two models do not have the same cost.  RFFAM-rx yields a 

period-I allocation with all ships loaded to their capacities (64 missiles in all), and 19 

missiles are required at the depot.  The initial allocation prescribed by RFFAM-mII is 

( )I 8,8,8,8,8,8,6,3=v , with 26 missiles required at the depot.  Although both solutions 

require the same number of missiles, the optimality gap is about 7%.  We already know 

that II 19dx = , so the solution obtained from RFFAM-rx is feasible, but in general that 

may not be the case. 

It is possible that investing further effort can lead to dependable and fast solutions 

of CCNIM-MAP based on RFFAM, for problems with eight ships and eight scenarios in 

each period.  But we require optimal solutions for significantly larger cases: this prompts 

the development of a specialized algorithm in the next chapter.  The specialized 

algorithm can identify ax , dx , or some ( )∈x X F , depending on the cost ratio, without 

requiring an LP-based solution at all. 

  

 

 

 

 

 

 

 



60 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 

 

 

 

 

 

 

 



61 

V. SPECIALIZED ALGORITHMS FOR CCNIM-MAP 

This chapter develops a specialized enumerative algorithm that calculates the 

values of the points discussed in the previous chapter, and therefore solves CCNIM-

MAP for a wide range of cost ratios.  The specialized algorithm calculates the value of 

either ax  or dx  if 1 2c c≠ , and at least one point from ( )Χ F  if 1 2c c= .  It does so by 

decomposing the two-period problem into single-period problems and using the 

remainders following period I as data for the period-II problem.  However, as discussed 

in the previous chapter, the optimal period-I allocation and the resulting optimal depot 

inventory need not be an optimal solution of CCNIM.  Instead, the algorithm we propose 

enumerates a set of candidate period-I allocations, calculates the depot inventory 

requirement resulting from each, and identifies the minimum-cost solution from these 

candidates. 

 

A. DECOMPOSITION 

The period-I problem comprises constraints (3.13), (3.15), and (3.16) from 

CCNIM-MAP.  To simplify constraints (3.15), we replace the demand vector in (3.13) 

with the scenario requirements vectors { }I Imax ,=dd d v , which represent the minimum 

allocations required in satisfied scenarios.  We obtain the following formulation of the 

period-I problem, CCNIM-pI.   

       (CCNIM-pI)          
I

I
1min Tc

v
1 v   (5.1) 

                           s.t. 

                           { }II IPr p≥ ≥v dd   (5.2) 

                                 I ≤v v   (5.3) 

                                 I n
+∈v   (5.4) 

As discussed in Chapter IV, an optimal solution of CCNIM-MAP must specify a 

period-I allocation that is feasible in CCNIM-pI.  CCNIM-pI’s feasible region is 



62 

characterized by the PEPs of the distribution of 
I

dd , I
jv , as seen by reformulating 

constraint (5.2) as ( )I I n
j

j J
+

∈

∈ +v v∪  (see Chapter I for details).  

For any given period-I allocation I
jv , we derive IS  period-II problems, each one 

being a PIP.  In each, we calculate II
sjx , the depot requirement for each combination of 

period-I allocation and scenario.  Because we require success in period II for every 

period-I scenario, the depot inventory requirement induced by each allocation plan is 

( )II I IImaxj sj
s

x x=v .  The remainders vector, ( )I Iˆ
sj j s

+
≡ −r v d , is used as data in this model, 

which we call CCNIM-pII.  (“pII” stand for “period II”). 

        (CCNIM-pII)       
II II

II

,
min

sj sj
sj

x
x

w
  (5.5) 

                           s. t. 

                           ( )( ){ }II II II II II
MAPPr sj sj sY p≥ ≥v v d  (5.6) 

                              II 0T
sj sjx− =1 w   (5.7) 

                    ˆ ˆ
sj sj sj− ≤ ≤ −v r w v r   (5.8) 

                                             n
sj +∈w   (5.9) 

                   where     II ˆ
sj sj sj≡ +v r w    (5.10) 

                  and ( ) ( ) ( ){ }II 1 1
MAP 1

arg 0 1
i iY

Y Y Y i n− −

+∈
∈ − ≥ ∀ ≤ −v v v

Y

 (5.11) 

Because the vectors ˆ
sjr  need not be monotonic, we may wish to allocate missiles 

to the ships in some order other than lexicographically, and assign targets accordingly.  

However, because of the MAP, the demand in the ith component of IId  is always assigned 

to the same ship.  Therefore, we may determine the mission assignments simultaneously 

with the allocations themselves.  The assignments are determined by any permutation 

matrix that orders the chosen allocations monotonically to match large demands with 

large inventories.  In the formulation of CCNIM-pII, we apply the inverse permutation, 

denoted ( )II
MAPY v , to the demand vector.  For example, consider the very simple case 



63 

where the two demand vectors are (4,4) and (6,3), and only one must be satisfied.  If the 

remaining inventory is (3,6), we can satisfy the second scenario without allocating any 

more missiles to the ships.   

As in the period-I problem, the period-II missile requirements take the inventory 

lower bounds into account.  Because ships will not return to port if they do not need to 

load more missiles to satisfy their projected demands in the scenarios we plan to satisfy, 

the number of missiles required by each ship from the depot is the positive part of the 

difference between the demands (adjusted for lower bounds) and the remainders.  If the 

difference is negative, then the excess missiles are “wasted” due to the no-transshipment 

policy (although they may be used by the ship in scenarios we are not planning to 

satisfy).  Hence, the number of missiles each ship requires from the depot to satisfy 

period-II scenario s′ , following period-I scenario s , is given by 

( ){ }( )II II II II
| , LL |max ,s s j sj s s sjY

+

′ ′= −dd v d v r , if period-I allocation j  is chosen.  We let 
II
sjdd  

denote the n-dimensional, integer, random vector of demands.  Obviously, to determine 

the requirement prior to solving CCNIM-pII, we must be able to determine the optimum 

permutation matrix ( )II II
MAP sjY v  before choosing II

sjv . 

As a first step in solving CCNIM-pII, we claim that if ship capacities are equal, 

constraint (5.8) can be dropped, and the optimal permutation of demands lists them in the 

same order as the remainders. For notational convenience, we may view this as a 

permutation of the remainders in non-increasing order.  If ships have unequal capacities, 

a more elaborate procedure would be required to ensure that the specified allocations can 

actually be loaded onto the ships, but we ignore this complication in this dissertation, and 

assume that iv v i= ∀ .  The validity of the sorting operation on the remainders is 

provided by the following Lemma 5, below. 

Let n
+∈r  represent the remainders following an arbitrary period-I scenario.  

There are !n  permutations of the elements of r .  Let { }1,..., !n=K  be the index set of all 

permutations, and let ,k k ∈r K , denote the kth permutation of r .  We denote the 



64 

monotonically ordered remainders vector by ∗r , and let k∗  denote some corresponding 

permutation index. 

 

Lemma 5. 

Let { }s
s

= dD ∪  be a set of scenarios, with corresponding index set S , where each 

column s  is ordered in non-increasing order.  Let ,k k ∈r K  be a permutation of the 

remainders, and let k∗  be a permutation index such that the components of ∗r  are non-

increasing.  Letting ( )II k
sk is i

i

x d r
+

= −∑  be the required depot inventory if scenario s 

occurs, for remainders permutation kr , we have II IImin sksk k
x x∗ = .   

Proof: 

Let IIargmin sk
k

k x
∈

∈
K

, and suppose that k ∗≠r r .  Then, there exist indices l and m 

such that l m<  and k k
l mr r< .  Consider k ′r , an alternative permutation of r  , in which  

            k k
m lr r′ =   (5.12) 

            k k
l mr r′ =   (5.13) 

            ,k k
i ir r i l m′ = ∀ ≠   (5.14) 

We obtain 

 ( ) ( ) ( ) ( )II II k k k k
sk sk ls m ms l ls l ms mx x d r d r d r d r

+ + + +

′
   − = − + − − − + −      

. (5.15) 

Because we assume ls msd d≥  and k k
l mr r< , there are six cases to examine: 

• If k
ls ld r≤ , then equation (5.15) reduces to [ ] [ ]0 0 0 0 0+ − + = . 

• If k
ms md r≥ , we have ( ) ( ) ( ) ( ) 0k k k k

ls m ms l ls l ms md r d r d r d r   − + − − − + − =    . 

• If k k
ls m ms ld r d r≥ ≥ ≥ , we have ( ) ( ) ( ) 0k k k

ls m ms l ls ld r d r d r   − + − − − +     

0k
ms md r= − ≤ . 

• If k k
ls m l msd r r d≥ ≥ ≥ , we have ( ) ( )0 0 0k k k k

ls m ls l l md r d r r r   − + − − + = − <    . 



65 

• If k k
m ls l msr d r d≥ ≥ ≥ , we have [ ] ( )0 0 0 0k k

ls l l lsd r r d + − − + = − ≤  . 

• If k k
m ls ms lr d d r≥ ≥ ≥ , we have ( ) ( )0 0 0k k

ms l ls l ms lsd r d r d d   + − − − + = − ≤    . 

We conclude that II II 0sk skx x′ − ≤  in every case.  If k ′ ∗≠r r , set k k ′=  and find a 

new permutation k ′r  that satisfies conditions (5.12)-(5.14).  Because K  is finite and each 

k′  indexes a different permutation of r , the sequence of permutation indices ( ), ,...,k k k κ′  

must reach ∗r  without increasing the value of II
skx .  █   

It follows that the permutation ∗r  minimizes the depot inventory required to 

satisfy any given set of scenarios D , and in particular any II
sp -feasible subset.  Therefore, 

assume that the remainder vectors ˆ
sjr  are listed in non-increasing order.  We arrive at this 

simplified formulation CCNIM-pIIm (“pIIm” stands for “period II modified”): 

(CCNIM-pIIm)   
II II

II

,
min

sj sj
sj

x
x

w
  (5.16) 

                              s. t. 

                           { }II IIPr sjsj sp≥ ≥w dd   (5.17) 

                                  II 0T
sj sjx− =1 w   (5.18) 

                                             ˆ
sj sj≤ −w v r  (5.19) 

                                                         n
sj +∈w   (5.20) 

                                         where     { } ( )( )II II II
MAP ˆ ˆmax ,sj s sj sjY

+
≡ −dd d v r r  (5.21) 

                            and    ( ) ( ) ( ){ }II
MAP 1

arg 0 1
i i

Y

Y Y Y i n
+

∈
∈ − ≥ ∀ ≤ −r r r

Y

 (5.22) 

CCNIM-pIIm is a simple PIP, whose solution is given by finding the PEP sj
∗w , 

such that II T
sj sjx = 1 w  is minimal.  There are two simple ways to find II

sjx ∗ , using the 

“forward enumeration” described by Beraldi and Ruszczyński [2001] (hereafter referred 

to as PEP enumeration), and the MSP algorithm (hereafter referred to as MSPA), 

described in Kress et al. [2004]. 



66 

The forward enumeration begins by obtaining a vector, which bounds the PEPs 

using the marginal distributions of the requirements from below.  This lower bound is set 

as the root node in a PEP search tree.  From each node in the tree, we generate the next 

level of nodes by generating all candidate allocation vectors that have one additional 

missile in one component.  If a candidate allocation satisfies the demand vectors with the 

required probability, it is a PEP, and no more levels are generated from it.   

MSPA begins by ordering all scenarios by their aggregate demand in non-

decreasing order.  An upper bound on the value of II
sjx  is obtained from the allocation 

required to satisfy the p-feasible subset defined by the first scenarios (in the aggregate 

ordering) whose aggregate probability of occurrence satisfies p.  Any scenario which 

requires more missiles to be satisfied cannot be part of the optimal p-feasible subset, and 

is eliminated.  If the aggregate probability of the remaining scenarios exceeds the 

threshold, MSPA generates, based on single-ship criteria, a list of scenarios that might 

not be included in an optimal p-feasible subset.  MSPA then enumerates the p-feasible 

subsets resulting from elimination of appropriately weighted sets of scenarios from that 

list.  Because MSPA typically enumerates only a small fraction of all few p-feasible 

subsets, it may be viewed as an advanced version of CCNIM-e. 

Clearly, CCNIM-pIIm can be formulated as an IP and solved by an LP-based 

branch-and-bound solver.  KPP indicate that, for a very large number of scenarios, 

branch-and-bound is more efficient than MSPA, but as we show later in this chapter, 

under those circumstances, PEP enumeration is also much more efficient, so it is unlikely 

that an IP would be needed.  If the problem becomes very large, then implementing some 

of the specialized decomposition procedures described in Chapter I may be worthwhile.  

This dissertation focuses on the decomposition properties of CCNIM-MAP, which are 

independent of the solution method for CCNIM-pIIm.  We believe that the simpler 

algorithms are more efficient for problems of practical size, and so restrict our 

computational analyses to those algorithms.  Another advantage of using MSPA or PEP 

enumeration is that we can solve CCNIM-MAP without requiring specialized solver like 

CPLEX.  

 



67 

B.  ALGORITHM 

Because of the differences between CCNIM-MAP and CCGIM, and because we 

seek solutions for a greater range of cost ratios, a simple decomposition procedure, as 

used by KPP, does not guarantee we obtain an optimal solution.  As shown in section A 

of Chapter IV, the point exposed by following their decomposition procedure, ax , may 

not be optimal for some 2 1c c≤ , and is certainly not optimal when 2 1c c>  (except for the 

degenerate case where there is only one feasible solution.)  We therefore need a more 

extensive list of period-I candidate allocations. 

We refer to the algorithm that solves CCNIM-MAP by CCNIM-dc (“dc” stands 

for “decomposition”).  CCNIM-dc has two distinct parts.  The first part optimally solves 

CCNIM in the case that 1 2c c≥ .  If 1 2c c< , we invoke the second part of CCNIM-dc to 

calculate dx , the optimal solution for cases where 1 2c c .  This solution may not be 

optimal, but by setting 1 2c c=  and invoking the first part of CCNIM-dc, we can verify its 

optimality or obtain a lower bound on the optimal solution value.  If 1 2c c≠ ,  we obtain 

every feasible period-I allocation plan that corresponds to the identified solutions. 

The difference between the two parts of CCNIM-dc lies solely in the way in 

which period-I candidate allocations are generated.  Theorem 2 proves that if 1 2c c≥ , 

some period-I allocation which is a PEP of the distribution of the scenario requirements 

leads to an optimal solution of CCNIM.  Furthermore, if 1 2c c> , then every optimal 

allocation must be a PEP of that distribution.  Therefore, we need only consider PEPs of 

the distribution of the scenario requirements as potential period-I allocations.  The set of 

PEPs is a small subset of all potentially legal allocations, so this enumeration scheme is 

relatively efficient.   

 

Theorem 2. 

Let { }I I
1 1,...,= v vPP  be the set of all PEPs on the distribution of 

I
dd , and let P  be 

the set of period-I allocations feasible in CCNIM-MAP; 1 ⊆P P  by definition.  Let 



68 

( ) II
1 2 ( )Tz c c x≡ +v 1 v v  be the total cost of a procurement plan as a function of the 

period-I allocation, and let ′∈v P  be an arbitrary feasible allocation plan.  Then,  

(1) If 1 2c c≥ , ( ) ( )
1

min minz z
′∈ ∈

′=
v v

v v
P P

. 

(2) If 1 2c c> , ( ) ( )
1 1

min minz z
′∈ ∈

′<
v v

v v
P P-P

. 

Proof: 

Let ( )argmin z
∈

′∈
v

v v
P

.  If 1′∈v P  then result (1) is trivial.  Otherwise, there must be 

some I
1j ∈v P  such that I

j′ ≥v v ; denote { }I I I I|j j ss= ∈ ≥v dS S  as the index set of scenarios 

satisfied by I
jv .  

For every I
js ∈S , the vector of remainders maintains ( )I I I I I( )s j j s j s

+
≡ − = −r v v d v d .  

Because I
j′ ≥v v , it is also true that I( )s s

′ ′= −r v v d , and I I( ) ( ) 0s s j j′ ′− = − ≥r v r v v v .  

Thus, every missile above the level I
jv  is carried over into period II for every scenario 

I
js ∈S , and could have been placed in the depot inventory, rather than on a ship.  This 

would have reduced the total cost by 1 2c c−  per missile. 

Let I
jS  denote the complement of the set I

jS , and suppose that for some scenario 

I
js′∈S , I I 0ij isv d− <  for some ship i.  In that case, if I

i ijv v′ > , then up to I I
is ijd v−  more 

missiles would be expended in period I and not be carried over into period II.  These 

“wasted” missiles would still have to be allocated out of the depot in period II, if scenario 

s′  were to occur. 

We conclude that ( )II II I I( ) ( )j i ij
i

x x v v′ ′≥ − −∑v v , which leads to:  

( ) ( ) ( ) ( )I I II II I
1 2 ( ) ( )j i ij j

i

z z c v v c x x′ ′ ′− = − + −∑v v v v  

                       ( ) ( )I
1 2 0i ij

i

c c v v′≥ − − ≥∑ . (5.23) 



69 

By assumption, ( ) ( )I
jz z′ ≤v v , which, combined with (5.23), proves claim (1).  

Claim (2) follows from the fact that if 1′∈v P-P , then ( )I 0i ij
i

v v′ − >∑ , and so if 1 2c c> , 

inequality (5.23) is strict.  █ 

We enumerate the entire set of PEPs using the forward enumeration scheme 

detailed in Beraldi and Ruszczyński [2002], and calculate the objective function 

( )I II I
1 2

T
j j jz c c x= +1 v v  associated with each one (recall that ( )II I

jx v  denotes the depot 

inventory resulting from period-I allocation I
jv ).  The optimal solution is given by 

obtaining min argmin j
j

j z∈ , and retrieving the appropriate values for the period-I 

allocation and depot inventory. 

Note that an alternative approach would enumerate all Ip -feasible subsets of the 

period-I scenarios and calculate the minimal allocations to satisfy those subsets.  Perhaps 

some candidate subsets could be eliminated, but we have not explored this possibility.  

This scheme may be more efficient if the demand values are themselves large, if the 

number of p-feasible subsets is small, or if the probability threshold is high.  We do not 

expect to encounter these conditions in most practical applications of CCNIM-MAP, 

because the demands are usually bounded, and there are more than a handful of scenarios 

in each period. 

If 1 2c c< , then, as discussed in Chapter IV, we seek the point dx , which 

minimizes the depot inventory.  To find dx , we initialize the set of potentially optimal 

allocations { }I
1= vA , where I

1 =v v , and calculate ( )II II I
1dx x≡ v  by solving the 

appropriate instance of CCNIM-pIIm.  We then begin an iterative trial-and-error method 

to find the minimum period-I allocation that yields II
dx , thus obtaining dx .  From the 

allocation in A , we create a list of predecessors, which are the allocations that have one 

missile less in exactly one ship’s inventory.  Because the demands in every scenario are 

ordered,  we  only  need  to  generate  predecessors that maintain the ordering i iu u ′≥  for  



70 

i i′< .  Therefore, from I
1v  we generate only one predecessor, in which I

1 foriv v i n= <  

and I
1 1nv v= − .  We refer to predecessors that are Ip -feasible as candidates, and 

eliminate those that are not. 

We use the following enumeration scheme, adapted from the backwards 

enumeration scheme proposed by Beraldi and Ruszczyński [2001].  In order to avoid 

creating duplicate predecessors, this scheme relies on the fact that i iu u i i′ ′≥ <  in any 

candidate allocation.  With each potential allocation in A , we maintain jδ , the index of 

the ship where allocation j differs from its successor.  For each I
j ∈v A , we generate only 

predecessors that reduce the inventory to either the ship indexed by 1j −δ  or by jδ .   

To check Ip -feasibility efficiently, we first calculate Iβ , the minimum allocation 

plan that satisfies every period-I scenario.  Clearly, if I
j ≥u β , then it must be Ip -

feasible.  If this test is not passed, a rigorous check for feasibility is performed.  Note that 

it is possible that I I
dx ≥/ β , because some scenario may have, for example, I

is id v i= ∀ , and 

never be satisfied by an optimal plan. 

We calculate the induced depot inventory level ( )II
jx u  for all of the candidate 

allocations.  Any candidate inducing a depot level of II
dx  missiles is an improvement over 

the allocations of the previous iteration, and is potentially optimal.  These potentially 

optimal allocations are used to create the next generation of candidate allocations.  The 

algorithm repeats until no more legal allocations can be found, or none of the tested 

allocations yields a two-period solution requiring only II
dx  missiles in the depot.  The 

incumbent period-I allocations all require I
dx  missiles, and are equally favorable. 

The solution dx  is optimal if 2c  is sufficiently large, but calculating the minimum 

value of 2c  at which dx  is optimal is difficult.  We can, however, obtain an upper bound 

on 2c , beyond which dx  is guaranteed optimal, by solving CCNIM-dc again, this time 

setting 1 2c c= , and obtaining minx .  We then calculate ( ) ( )I II I II
min mind dx x x x∆ = + − + .  If 



71 

0∆ = , then dx  is optimal for any 1 2c c< .  Otherwise, a lower bound on the optimal 

solution is given by 

                          ( ) ( )I II
1 21 1d dz c x c x= − − ∆ + + . (5.24) 

The threshold cost ratio for which dx  is guaranteed optimal is calculated such that 

dz z= , and is given by 2 1 1c c = + ∆ .  We define the relative gap in CCNIM-MAP by  

                       ( )dgap z z z= − .  (5.25) 

A skeletal, pseudo-code description of CCNIM-dc is given here using vector 

notation, with vectors always being n-dimensional columns.  We assume that the ships 

are listed in non-increasing order of their inventory lower bounds, and that their 

capacities (upper bounds) are equal.  If the capacities are not equal, a small modification 

is required to ensure a feasible solution, and that solution is not guaranteed optimal for 

CCNIM-MAP.  Appendix E provides a more detailed description of CCNIM-dc.   

 
Data 

{ }1,...,i n∈          ships 

{ }I

I
1,...,s s=

S
S   period-I scenarios. 

{ }II

II
1,...,s s′ ′=

S
S  period-II scenarios. 

I
sd  vector of demands for period I scenario s 
II
s′d  vector of demands for period II scenario s′  

 (Each demand vector is preordered in non-increasing order.) 
Ip  probability threshold for period I 
II
sp  probability threshold for period II, following period-I scenario s 

sϕ  probability of period-I scenario s 

|s sϕ ′  conditional probability of period-II scenario s′  on period-I scenario s 

v  missiles capacity (upper bound, for each ship, on the number of missiles  
it can carry.)  Assume iv v=  for all i. 

v  discretionary lower bounds on missile load-outs 
Assume bound vectors are non-increasing. 

1c  cost of allocating a missile to a ship 

2c  cost of allocating a missile to the depot 

 



72 

(1) Algorithm CCNIM-dc  
(2) begin 
(3)     if 1 2c c≥  then  //  Part 1 

(4)         for : 1s =  to IS  do 

(5)             { }I I: max ,s s=dd d v ;   //  number of missiles required in successful scenarios 

(6)         end; 

(7)         GENERATE { }I I
1: ,...,= v v AA , all PEPs of I

sdd ;   // see theorem 2 

(8)         for : 1j =  to A  do                        //  allocation index 

(9)             for : 1s =  to IS  do 

(10)                 ( )I I:sj j s

+
= −r v d ;           //  remaining inventories following scenario s 

(11)                 ( ): SORT , 'descend 'sj sj=r r ;  //  by inventory size 

(12)                 { }( )II II
| , : max ,s s j s sj

+

′ ′= −dd d v r ; //  period-II requirement vector 

(13)                 { }II : min T
sjw =

w
1 w  

(14)                          II II
| ,s.t. is a -efficient point of s s s jp ′w dd ; 

(15)             end; 

(16)             ( )II I II: maxj j sj
s

x w=v ;    //  we refer to lines (9)-(16) as calculating ( )II I
j jx v  

(17)         end; 

(18)         { }I II
1 2

ˆ : argmin T
j j

j

j c c x= +1 v ;    I I
ˆˆ :
j

=v v ;    II II
ˆˆ :
j

x x= ; 

(19)     else       //  Part 2 
(20)         { }:= vC ;                             //  initialize current set of candidates  

(21)         { }nδ= ;                              //  initialize predecessor index 

(22)         := ∅CN ;                            //  initialize set of candidates for next generation 
(23)         ( )II II:dx x= v ;               //  see Part 1 

(24)         while ≠ ∅C  
(25)             for : 1j =  to C  do 

(26)                 for { }: max 1,1jj′ = −δ  to jδ  do 

(27)                     : j=u C ; 

(28)                     : 1j ju u′ ′= − ;                        //  reduce one component only 

(29)                     if ( ) ( )I
1 1is -feasible j j jp u u u′ ′ ′− +≥ ≥u and  then 

(30)                         { }:= uCN CN∪ ;  { }: j′=δN δN∪ ; 

(31)                     end; 
(32)                 end; 
(33)             end; 



73 

(34)             for :j = CN  to 1 by 1−  do 

(35)                 if ( )II I II
j j dx x>u  then 

(36)                     { }I: \ j= uCN CN ;  { }: \ j=δN δN δN ; 

(37)                 end; 
(38)             end; 
(39)             if ∅CN==  then 
(40)                 ˆ :=A C ; 
(41)             end; 
(42)             :=C CN ;  :=δ δN ; 
(43)         end; 
(44)         I I II IIˆ ˆ: : ;j dx x= ∈ =v v A;  

(45)     end; 
(46) end; 

 

C. COMPUTATIONAL RESULTS 

1. Comparison with RFFAM 

To test the performance of CCNIM-dc, we repeat each case reported in Chapter 

II.  The algorithm is implemented in Matlab 7.1, and run on a 2.8 GHz personal computer 

under the Microsoft XP operating system.  Because the run times are very short 

compared with the timekeeping resolution (1/ 64  seconds), we measure the time required 

to solve 1000 replications of each instance, and  divide the result by 1000.  The algorithm 

expends the same amount of effort for any ratio 2 1 1c c ≤ , and the same amount of effort 

when 2 1 1c c > .  The results are summarized in Table 5.  For cases with 2 1 1c c ≤ , we 

also report the number of dominating period-I allocations that are actually examined by 

the algorithm.  For cases with 2 1 1c c > , we also report the number of times the algorithm 

solved a period-II problem.   

The ability of the Matlab code to solve all of the specified cases in a few 

milliseconds is very encouraging.  We perform more extensive testing of the 

computational behavior by randomly generating instances for cases of various sizes.  

Solving CCNIM-dc when 2 1 1c c ≤  is a two-step procedure, and we investigate the 

behavior of each step separately.  In particular, we compare the performance of the two 

methods  available to solve  CCNIM-pIIm, namely PEP enumeration (until the first PEP 

is found) and MSPA.  This analysis will enable us to choose the appropriate algorithm 



74 

based on a problem’s characteristics.  When 2 1 1c c > , we are only solving instances of 

the period-II problem while enumerating period-I allocations of interest.  In this case, the 

algorithm’s computation time is, therefore, directly proportional to the time required to 

solve a single period-II instance of that size. 

 

 
2 1 1c c ≤  2 1 1c c >  

Case Name Number of 

Period-I PEPs 

Average CPU-

Time (msec.) 

Number of 

Period-II 

Problems 

Average CPU-

Time (msec.) 

case 2a 2 3.9 2 2.2 

case 2b 2 3.8 2 2.4 

case 2c 2 5.8 2 4.6 

case 2d 1 2.3 2 4.1 

case 2f 2 6.7 2 6.4 

Table 5. CCNIM-dc Solution Results for Specified Cases.   

“Case Name” references the cases defined for RFFAM; see Appendix C 
for details.  “Average CPU-time” is the average time over 1000 runs 
required to optimally solve the instance, in milliseconds.  “Number of 
Period-I PEPs” is the number of period-I allocations for which the two-
period solution must be calculated to determine the optimal solution when 

2 1 1c c = .  “Number of period-II problems” specifies the number of times 

a period-II problem was solved.  This includes the initial solution of II
dx .   

Solution times are extremely short, even for case 2f, for which RFFAM 
cannot obtain an integer solution in one hour of computation. 

 

2. Period-I Solution Times 

Here, we randomly generate 100 instances for each case size; all demands for 

missiles are uniformly distributed integers on [0,8].  Allocation lower and upper bounds 

are set at 2 and 8 missiles, respectively, for all ships.  We assume every scenario is equi-

probable.  We observe the performance of the PEP enumeration as each of the three 



75 

parameters, n , IS , and Ip , varies separately.  Because solution times may be very short 

compared with the resolution of the timekeeping mechanism, we repeatedly solve each 

instance until a discretization error of less than 1% is achieved (a minimum runtime of 

1.56 seconds), and report the observed time divided by the number of times the 

enumeration algorithm solved. 

It is important to stress that the specific results are strongly affected by the 

distribution of the generated scenarios.  The purpose of these trials is only to observe 

general trends, and verify that problems of useful size can be solved in a reasonable 

length of time. 

We first observe the effect of the number of ships on the enumeration time of the 

entire set of PEPs of the period-I requirements vectors.  The number of period-I scenarios 

is set at I 12=S , and the probability threshold is set at I 0.75p = .  The distribution of the 

computation times is summarized in the left graph of Figure 3, which depicts the median, 

the quartiles and the minimum and maximum observed times.  The graph on the right of 

Figure 3 displays the same statistics for the enumeration gap, i.e., the difference between 

the maximum level of any PEP of the requirements vector and the level of the PEP lower 

bounding vector.  (Recall that the “level” of an integer vector is defined as the sum of its 

components.)   

There are two of observations we wish to emphasize.  First, note that every 

statistic except for the minimum time increases exponentially as the number of ships 

increases.  The minimum value appears to increase only linearly, if we ignore the sample 

for 24n = .  Second, it is clear that there is great variability in the computation times for 

cases of equal size, and that this variability increases as n increases.  For cases of 20 ships 

or more, the computation time of the entire set of PEPs ranges over three orders of 

magnitude.  This variability makes it difficult to predict, based on the case size alone, 

how difficult solving a specific case will be.  Clearly, the easiest cases involving 28 ships 

require less effort than the hardest cases involving as few as 8 ships. 



76 

 

Figure 3.   Period-I PEP enumeration Versus Number of Ships.   
The graph on the left presents the median (diamonds), first and third 
quartiles (circles), and minimum and maximum values (crosses) of the 
computation times of the PEPs.  The computation times are drawn on a 
logarithmic scale, as n, the number of ships, varies linearly.  We set 

I 12=S  and I 0.75p = .  The graph on the right presents the same statistics 

for the enumeration gap, but on a linear scale.  The PEP enumeration time 
is strongly correlated with the enumeration gap. 

 

The Spearman’s rank correlation [e.g., Conover 1999, pg. 314] between the 

computation time and the enumeration gap, taken over 600 observations, is 0.8127 with a 

p-value of practically zero.  It is no surprise that the PEP enumeration time is strongly 

correlated with the enumeration gap because the enumeration procedure generates a 

search tree, whose depth equals that gap.  Any node in the tree, which does not represent 

a PEP, contributes up to n successors, depending on the number of monotonic vectors, 

which conform to the capacity bounds, that can be generated by adding 1 to any single 

component of the vector represented by that node.  Therefore, if we denote the 

enumeration gap by g, the number of nodes in the tree is ( )O gn .   



77 

The Spearman’s correlation is fundamental to understanding the behavior of the 

computation time as a function of different case parameters, as we show in the following 

figures.  To understand how changes in some case-size parameters affect the enumeration 

time, it suffices to understand how they affect the enumeration gap.  For some parameters 

this may be easier than for others, but in any case, this behavior is, to some extent, an 

artifact of the scenario-generation scheme.   

From Figure 3, it seems that the majority of enumeration gaps increase linearly 

with n.  Intuitively, this can be explained as follows.  The PEP lower bound is 

constructed from the marginal distribution of each element in the requirements vector, 

based on all of the scenarios.  There is a positive probability that the value of the PEP 

exceeds the lower bound for each element (except those equaling the capacity bound).  

As the number of ships increases, and the requirement vectors contain more elements, the 

expected number of PEP elements that exceed their lower bound increases, contributing 

to the observed increase in the enumeration gap.   

We next observe the behavior of the PEP enumeration algorithm as the number of 

scenarios varies, as shown in Figure 4.  There are 12 ships in each scenario, and the 

probability threshold set at I 0.75p = .  We observe a slow increase in the enumeration 

gap, which is responsible for the increase in computation time.  Again, the reason for this 

increase is an artifact of the scenario-generation mechanism, and does not necessarily 

reflect on problem size.  Intuitively, the PEP lower-bounding vector has some asymptotic 

value, and, as the number of scenarios increases, the computed lower bound approaches 

this asymptotic vector.  However, as the number of scenarios increases, the number of p-

feasible subsets increases exponentially, and the likelihood of there being more than a 

few PEPs increases.  Then, the probability that some PEP would be of a high level 

increases, increasing the gap.  These effects can be seen in Figure 5. 

 



78 

 

Figure 4.   Period-I PEP enumeration Versus Number of Scenarios.   
The statistics presented are the same as in Figure 3.  We vary the number 
of scenarios, and set 12n =  and I 0.75p = . 

 



79 

 

Figure 5.   PEP Lower Bound Level Compared with Maximum Level.   
As the number of scenarios increases, the PEP lower bound level 
converges to some asymptotic value, but the maximum level appears to 
increase slowly.  This explains the increase in the enumeration gap, 
observable in Figure 4. 

 

Finally, we observe the performance of the enumeration procedure as the 

probability threshold varies.  For 12 ships and 10 scenarios, we vary the probability 

threshold in steps of 0.1, so that at each observed probability, the size of a p-feasible 

subset changes by one.  As shown in Figure 6, decreasing the probability threshold tends 

to increase the enumeration gap, and as a consequence, the computation time as well.  

Lower probability thresholds tend to have a larger gap because the PEP lower-bound 

level tends to decrease faster than the PEP maximum level.  At the low extreme, the PEP 

lower bounding vector is the 10% sample quantile marginal distributions, and the 

maximum PEP is the largest level of the 10 vectors.  At the other extreme, the lower 

bounding vector is the 100% quantile, there is only one PEP, comprising the maximum 

over all 10 vectors, and the two values coincide. 



80 

 

Figure 6.   Period-I PEP Enumeration Versus Success Probability.   
The statistics presented are the same as in Figure 3.  In each case, we set 

12n =  and I 12=S .  The probability threshold varies between 0.1 and 1.  

At lower success probabilities, the enumeration gap tends to be larger, 
resulting in longer computation times. 

 

In summary, the enumeration of Period-I PEPs does not require much 

computation effort, and can be completed in about one second of computation for cases 

of practical size.  The Period-I enumeration need not be, therefore, an issue of concern in 

practical applications. 

 

3. Period-II Solution Times 

We now consider the computation time for the depot inventories, required for 

period II.  In order to solve CCNIM-MAP, CCNIM-dc must compute ( )II Ix v , the 

required depot inventory for a single period-I allocation times several times.  In this 



81 

section we report the times required to compute ( )II I
j jx v , for a randomly selected period-I 

PEP from those obtained when I 12=S  and I 0.75p = .  Note that computing ( )II I
j jx v  

itself requires ( )IO S  computation time, because the depot inventory is calculated 

separately for the remainders following each period-I scenario s.  We compare the 

performance of PEP enumeration with that of MSPA, as a function of n , IIS , and II
sp .  

This may help us choose the appropriate algorithm based on the size of the case we wish 

to solve. 

 

Figure 7.   Depot Inventory Calculation: Time Versus Number of Ships. 

The statistics presented are the same as in Figure 3.  In each case, II 12=S  

and II 0.75p = .  The graph on the left presents the computation times 
achieved by PEP enumeration and the graph on the right presents the same 
data for computation by the MSPA.  As expected, the MSPA, whose 
computation time is theoretically linear in n, is much more efficient for 
long demand vectors than is PEP enumeration. 



82 

We set II 12=S  and II 0.75p = , and vary the number of ships.  The graphs in 

Figure 7 summarize the distribution of the computation time of the optimal depot 

inventory for a single allocation, ( )II I
j jx v , when it is calculated by PEP enumeration (on 

the left) or by MSPA (on the right).  As expected, the computation time of the PEP 

enumeration algorithm is exponential in n.  In contrast, the MSPA algorithm’s behavior is 

theoretically linear in n, and this is corroborated by the results of Figure 7.   

It is interesting to compare the PEP enumeration to the performance achieved in 

period I.  In period II, the PEP enumeration algorithm halts once the first PEP, of 

minimal level, is found.  However, the median computation time is 3.3 times longer than 

in period I, averaged over n, because the requirement vectors in period II are not 

monotonic.  The gap between the PEP lower bound level and the level of the minimum 

PEP tends to be actually larger than the gap between the PEP lower bound level and that 

of the maximum PEP in period I.  Furthermore, each node generates more successors, on 

average, because the monotonicity restriction is relaxed.  A worst-case time of 750 

seconds was observed, about 1000 times longer than the worst case Period-I PEP 

enumeration time for 20 ships. 

We next compare the behavior of the two algorithms as the number of scenarios 

varies.  We assume a combat force of 12 ships, and set the probability threshold at 

I 0.75p = .  The computation times for both algorithms increase exponentially as the 

number of scenarios increases.  However, the rate of increase for MSPA is greater than 

that for PEP enumeration.  When the number of scenarios is small MSPA, is more 

efficient; for II 24≥S  it appears that PEP enumeration is faster. 

We end this section by comparing the behavior of the two algorithms as the 

probability threshold varies.  For cases with 12 ships and II 20=S , we vary the 

probability threshold over the range 0.5-0.95 (we already observed in period-I that the 

result is trivial when 1p = ).  The results are summarized in Figure 9 in similar fashion to  



83 

Figure 7.  As can be seen, there is little difference in the distribution of the computation 

time between the two algorithms, but MSPA seems to hold a slight advantage for all 

thresholds II 0.9p ≤ .   

We believe that in most applications to naval forces, the number of ships will not 

exceed 20.  The number of hand-generated scenarios is probably less than 10, but may be 

much greater if automatic scenario generation is applied.  From the above analysis, it 

seems that the MSPA is preferable for solving the period-II depot inventory problem, 

with the caveat that the number of scenarios should not be too large. 

 

Figure 8.   Depot Inventory Calculation Time Versus Number of Scenarios. 
The format of theses graphs is similar to that of Figure 7.  We vary the 
number of period-II scenarios and set 12n =  and II 0.75p = .  Both 
algorithms’ computation time increases exponentially, but the rate of 
increase for MSPA is greater than for PEP enumeration.  Although MSPA 
is more efficient for a small number of scenarios, PEP enumeration 
becomes more efficient if the number of scenarios exceeds 24. 

 



84 

 

Figure 9.   Depot Inventory Calculation Time Versus Probability Threshold.   
The format of theses graphs is similar to that of Figure 7.  We vary the 

probability threshold for period II. and set 12n =  and II 20=S .  There is 

not much difference between distribution of the computation times of the 
depot inventory by PEP enumeration and by MSPA.  

 

4. CCNIM-dc Solution Times 

We next solve multiple instances of CCNIM-dc, for both cost ratios, to get a feel 

for solution times as case size increases.  We use the MSPA to obtain the depot inventory 

in each case.  We generate 100 instances of each case size, and maintain I IIn = =S S  

and I II 0.75sp p= = .  Figure 10 summarizes the distribution of computation times for 

2 1 1c c ≤  (left graph) and 2 1 1c c >  (right graph).  The solution times increase 

exponentially as case size increases, which is to be expected from previous results.  

However, even for cases of size 24, most instances solve in less than ten seconds, and the 

worst-case observed is only 270 seconds.  A case of that size is probably as large as we 

would need to solve, and the probability thresholds are not likely to be set lower. 



85 

 

Figure 10.   Distribution of CCNIM-dc Solution Times.   
The graphs summarize the distribution of CCNIM-dc solution times as 
the case size varies, for any cost ratio; I II 0.75sp p= = .  As case size 

increases, solution times increase exponentially, and the relative 
dispersion of the solution times increases as well. 

 

5. CCNIM-dc Optimality Gaps 

CCNIM-dc solves optimally for most cost ratios, but if 2 1c c> , an optimality gap 

(5.25) usually remains.  The size of the optimality gap is data dependent, and instances 

where it is large can be created.  For any given case parameters, the optimality gap  is 

maximized when 2 1c c ε= +  and 0ε → .  For the random scenario generation scheme we 

adopt for these tests, however, the gap tends to be small.  The mean relative optimality 

gap is roughly 5%, and the maximum, over all cases, is 18%.  The equilibrium cost ratio, 

however,  tends  to  increase  with  case  size,  and  in  some instances is as high as 21.  It  



86 

appears, then, that in large cases, there is a much wider range of cost ratios for which 

some optimality gap persists, but the gap is not necessarily larger than with smaller cases.  

Table 6 provides more detail. 

 

Case 

Size 

Mean 

Maximum Gap 

Max 

Maximum Gap 

Mean Threshold 

Cost- Ratio 

Max Threshold 

Cost- Ratio 

8 0.0583 0.1795 4.48 15 

12 0.0528 0.1610 6.13 20 

16 0.0449 0.1234 6.85 20 

20 0.0445 0.0963 8.5 20 

24 0.0409 0.0868 9.32 21 

Table 6. CCNIM-dc Optimality Gaps for Specified Cases.   

“Case Size” references the number of ships and scenarios in each period, 
which are all equal.  The maximum optimality gap is given by ( )dz z z− , 

and the threshold cost-ratio, above which dx  is guaranteed optimal, is 
given by 2 1 1c c = + ∆ .  Notice that although the threshold increases 

significantly with case size, the optimality gap does not.  In fact, both the 
mean and the maximum observed gaps tends to decrease with case size.  

 

D. CONCLUSIONS 

This chapter has developed CCNIM-dc, an algorithm to directly solve CCNIM 

without the use of an LP-based solver.  CCNIM-dc requires that all ships have equal 

capacity, and yields an optimal solution for a wide range of cost ratios.  Although the 

computation time increases exponentially with case size, these times are still quite 

reasonable even for large, practical problems.  All cases are solved optimally except 

when 2 11 1c c< < + ∆ .  But, when 2 1c c  is within this range, the average maximum 

optimality gap is only about 5%. 

 



87 

VI. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

We seek to determine minimum-cost initial ship load-outs plus depot-level 

inventory, while ensuring, with sufficiently high probability, that all ships can satisfy 

their assigned missions for each combat period.  Each mission represents a target and its 

associated “demand,” which is the number of missiles required to successfully engage 

that target.  A “cost ratio,” the cost of a missile stored in the depot for potential use in 

period II divided by those initially allocated to the ships, reflects operational preferences 

rather than actual monetary costs.   

We initially formulate the problem as a two-period, which we denote by CCNIM 

(Chance-Constrained Naval Inventory Model).  We assume that all targets will be in 

range of each combat ship in the fleet, and the force commander can assign any target to 

any ship; we denote these assignment options by the term “flexible assignments.”  The 

force commander assigns at most one target to each ship, and does so based on the 

available missile inventories and the target demands.  We further assume that ships have 

bounded capacities, carry no safety stocks, are not recalled to port to offload excess 

inventories prior to period II, and there is no direct transshipment of missiles between 

ships.  Due to the flexibility in target assignments inherent in naval combat, the natural 

model, CCNIM, involves three stages, and is computationally difficult to solve.   

We show that by following a monotonic assignment policy (MAP), under which 

targets with larger demands are assigned to ships with larger inventories, the commander 

will satisfy every scenario possible with his current supply of missiles.  And, because this 

policy is reasonable in the heat of battle, we assume the commander will follow it.  Given 

the MAP, we can reduce CCNIM to a two-stage stochastic program, CCNIM-MAP, 

which is easier to solve.   

We go on to show that the MAP optimally solves the Flexible Minmax Subset 

Problem (FMSP).  In this generic combinatorial problem, a subset of weighted columns 

must be chosen, such that the aggregate weight exceeds p, and the sum of the row 

maxima is minimized.  We prove that if we may permute each column independently, 



88 

then an optimal solution can be found by ordering every column monotonically, and 

selecting among the ordered columns.  We show that a single period of CCNIM-MAP 

can be transformed to an instance of FMSP.  Algorithms for solving FMSP are already 

known in the literature, and include the MSP algorithm presented in Kress et al. [2004] 

and appropriately tailored enumeration schemes for “p-efficient points” (PEPS), e.g., 

Beraldi and Ruszczyński [2002]. 

We propose a practical algorithm, CCNIM-dc, that solves CCNIM-MAP for a 

wide range of cost ratios, assuming that the ships’ missile capacities are identical.  If the 

cost of storing missiles at the depot is only a little higher than the cost of allocating 

missiles to the ships, the resulting solution is not, generally, guaranteed optimal.  

However, CCNIM-dc solves much faster than the deterministic equivalent integer 

program, RFFAM, which often cannot solve problems of practical size for any cost ratio.  

CCNIM-dc, which we implement in Matlab version 7, solves most test-problem 

instances with as many as 24 ships and 24 scenarios in each period, in less than one 

minute of CPU-time on a Pentium IV, 2.8 GHz personal computer.  If the result is not 

provably optimal, the optimality gap remaining is usually just a few percent.  

A second advantage of CCNIM-dc is that, except when the cost ratio is 1, it 

provides all of the initial inventory combinations that solve the problem optimally.  

Planners can then select a preferred allocation according to other criteria not explicitly 

handled by the algorithm.  Furthermore, CCNIM-dc, does not require specialized 

optimization software, and may be implemented in any generic computing language. 

 

B. FUTURE WORK 

A potentially important procurement policy would minimize the total number of 

missiles procured, and allocate as many of them as possible to the combat forces.  This 

policy can be summarized by a cost ratio slightly greater than one.  CCNIM-dc does not 

solve optimally for such a cost ratio, and such an extension may prove useful. 

A key assumption of CCNIM-MAP is that the number of targets does not exceed 

the number of shooters in any scenario.  To analyze the opposite situation with our 

techniques, the analyst must first predetermine which pairs of targets (or more) will 



89 

comprise a single mission, so that the total number of missions dos not exceed the 

number of shooters.  We are unaware of any optimal method for doing this except brute-

force enumeration.  Thus, extending CCNIM-MAP to handle this situation may prove to 

be an interesting challenge. 

Flexible target assignments usually arise in naval combat, but in most situations, 

and in particular as force sizes grow, the assignments are not fully flexible nor are they 

necessarily one-to-one.  Semi-flexible assignments pose a challenge to the current 

modeling scheme, particularly if legal target assignments are not known before combat 

actually occurs.  Methods to approximate such cases should be developed, as solutions of 

CCNIM-MAP may be optimistic.   

Another issue that merits attention arises from the fact that assigning targets in the 

real world is a stochastic process.  In practice, not all of the targets in a scenario are 

detected at the time an attack begins, and some shooters will have to be committed to 

targets before the force commander can see the full extent of the attack.  Consequently, 

targets may be identified or at least assessed incorrectly, causing the expenditure of too 

many or too few missiles.  A special model or sub-model will be required to handle such 

situations (for example, see Washburn [2001]).  A practical allocation plan should be 

robust to the effects of combat uncertainty, and techniques to ensure this should be 

explored. 

Finally, we note the need for handling this issue: potential enemy interdiction of 

our assets.  Interdiction may occur through (a) direct attack on the missile depots, or (b) 

disruption of access to those depots by submarines or offensive mining operations.  

Furthermore, missiles that are placed on ships may be lost in combat if those ships come 

under attack.  In theory it is not too difficult to add scenarios to incorporate potential 

interdictions, but actually solving such a model might require substantial research effort.  

In any case, it seems that handling larger targets sets is a prerequisite to a consistent 

assessment of the effect of loss of shooters. 



90 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 



91 

LIST OF REFERENCES 

Ancker, C. J., (1982).  One-On-One Stochastic Duels, Operations Research Society of 

America, Arlington, VA. 

Appleget, J. A. and Wood, R. K., (2000). “Explicit-Constraint Branching for Solving 

Mixed-Integer Programs,” Computing Tools for Modeling, Optimization and 

Simulation, eds. Laguna, M. and Gonzalez-Velarde, J.L., Kluwer Academic 

Publishers, Boston, MA, pp. 243-261. 

Avital, I., (2004).  “Two-Period, Stochastic Supply-Chain Models with Recourse for 

Naval Surface Warfare,” MS in Operations Research, The Naval Postgraduate 

School, Monterey, CA. 

Baker III, A. D., (2002). The Naval Institute Guide to Combat Fleets of the World, U.S. 

Naval Institute Press, Annapolis MD. 

Bassok, Y., Hopp, W. J., and Rohatgi, M., (2002).  “A Simple Linear Heuristic for the 

Service Constrained Random Yield Problem,” IIE Transactions, Vol. 34, No. 5, 

pp. 479-487. 

Beraldi, P., and Ruszczyński, A., (2001).  “A Branch and Bound Method for Stochastic 

Integer Problems under Probabilistic Constraints,” RUTCOR-Rutgers Center for 

Operations Research, RRR 16-2001, February.  

Beraldi, P., and Ruszczyński, A., (2002).  “The Probabilistic Set Covering Problem,” 

Operations Research, Vol 50, No 6, pp. 956-967. 

Birge, J. and Louveaux, F., (1997). Introduction to Stochastic Programming, Springer-

Verlag, New York, NY. 

Charnes, C., Cooper, W. W., and Symonds, G. H. (1958).  “Cost Horizons and Certainty 

Equivalents: an Approach to Stochastic Programming of Heating Oil Production,” 

Management Science, Vol. 4, No. 3, pp 235-263. 

Conover, W. J. (1999).  Practical Nonparametric Statistics, John Wiley and Sons, Inc., 

New York, NY. 



92 

Dentcheva, D., Prékopa, A., and Ruszczyński, A., (2000).  “Concavity and Efficient 

Points of Discrete Distributions in Probabilistic Programming,” Math. 

Programming, Ser. A 89, pp 55–77. 

Diwekar, U. M., (2002).  “Optimization under Uncertainty: an Overview,” SIAG-OPT 

Views-and-News, 13, no. 1, pp. 1-8. 

Hughes, W. P. Jr, (1995).  “A Salvo Model of Warships in Missiles Combat Used to 

Evaluate Their Staying Power,” Warfare Modeling, eds. Bracken, J., Kress, M. 

and Rosenthal, R. E., John Wiley and Sons, Inc., Danvers, MA, pp 121-144. 

ILOG CPLEX. [http://www.ilog.com]. December 10, 2003. 

Kress, M., (2002).  Operational Logistics – The Art and Science of Sustaining Military 

Operations, Kluwer Academic Publishers, Boston, MA. 

Kress, M., Penn, M., and Polukarov, M., (2004). “Two-Stage Supply-Chain with 

Recourse and Probabilistic Constraints,” in review. 

Miller, L.B., and Wagner, H., (1965).  “Chance-Constrained Programming with Joint 

Constraints,” Operations Research 13, pp. 930-945. 

Murr, M. R. and Prékopa, A., (1996).  “Solution of a Product Substitution Problem Using 

Stochastic Programming,” RUTCOR-Rutgers Center for Operations Research, 

RRR 32-1996, November. 

Paschalidis, I. C., Yong, L., Cassandras, C. G., and Panayiotou, C., (2004).  “Inventory 

Control for Supply Chains with Service Level Constraints: A synergy between 

Large Deviations and Perturbation Analysis,” The Annals of Operations 

Research, Vol. 126, pp. 231-258. 

Porteus, E. L., (1990). “Stochastic Inventory Theory,” Handbooks in OR & MS, Vol. 2 - 

Stochastic Models, eds. Heyman, D. P. and Sobel, M.J., Elsevier Science 

Publishers B. V., Amsterdam, pp. 605-652. 

Prékopa, A., (1990).  “Dual method for the Solution of One-Stage Stochastic 

Programming with Random Rhs Obeying a Discrete Probability Distribution,” 

Zeitschrift fur Operations Research 34, pp. 441-461. 



93 

Prékopa, A., (1995).  Stochastic Programming, Kluwer Academic Publishers, Boston, 

MA. 

Prékopa, A., Vizvári, B. and Badics, T., (1996).  “Programming Under Probabilistic 

Constraint With Discrete Random Variable,” RUTCOR-Rutgers Center for 

Operations Research, RRR 10-1996, March. 

Rabinovitch, A., (1997).  The Boats of Cherbourg, Naval Institute Press, Annapolis, MD. 

Rardin, R. L. (1998).  Optimization in Operations Research, Prentice Hall, Upper Saddle 

River, NJ. 

Ruszczyński, A., (2002).  “Probabilistic Programming with Discrete Distributions and 

Precedence Constrained Knapsack Polyhedra,” Mathematical Programming Ser. 

A 93, pp 195–215. 

Simchi-Levi, D., Kaminsky, P., and Simchi-Levi, E., (2000).  Designing and Managing 

the Supply Chain, Irwin McGraw-Hill, Boston, MA.  

Washburn, A., (2001). Joint Optimizing Informational Strike Tool, NPS-OR-02-001-PR 

Project Report, Naval Postgraduate School, Monterey, CA. 



94 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



95 

APPENDIX A – FFAM 

For comparison purposes, we provide the formulation of FFAM, the original IP 

used to solve CCNIM, which appeared in Avital [2004].  This formulation follows 

identical assumptions to those of RFFAM, but has many more binary variables.  It uses 

auxiliary models, similar to those used by RFFAM, to generate some of the required 

parameters. 

A. FFAM SPECIFICATION 

The following non-mathematical description of FFAM itemizes a list of problem 

requirements followed by the constraint keys where they are represented in the 

mathematical model presented in the next section.   

Regular constraints 

• Minimize the weighted cost of allocating missiles to the combat ships in period I 
and storing extra missiles at a depot for possible use in period II, (7.1). 

      Subject to: 

• Each scenario in each period is successful only if every ship has enough missiles 
to satisfy the demand of its assigned mission, (7.2) and (7.17). 

• In each period, the probability of successfully covering the scenarios exceeds a 
user-specified threshold, (7.3).  In the second period, the cumulative probability 
must be achieved for every possible, preceding, period-I scenario, (7.18). 

• Each ship is allocated a specific number of missiles in period I, (7.4). 

• Each ship in each scenario is assigned one mission, (7.5) and (7.19). 

• Each mission in each scenario is assigned to exactly one ship (with a specific 
number of missiles), (7.6) and (7.20). 

• Following assignment and prosecution of a mission, each ship in each period-I 
scenario maintains an inventory equal to its initial level less the demand 
associated with its assigned mission, if that demand can be met, (7.7).  Otherwise, 
the remaining inventory is zero, (7.8).  (All ships “stay and fight.”) 

• Each ship’s post-scenario inventory equals the number of missiles remaining in its 
inventory after prosecuting a mission, (7.9) and (7.10). 

• For each ship, the number of missiles that may be placed on it is bounded from 
below (discretionary operational constraint) and from above (physical capacity 
limit), (7.11) and (7.21). 



96 

• For each period-I scenario, each ship’s total inventory of missiles, before 
prosecuting any period-II mission, equals the post-mission inventory after period I 
plus any missiles that are replenished, (7.12)-(7.14). 

• For each ship and each period-I scenario, only one level of replenishment may 
take place following period I, (7.15). 

• Following each period-I scenario, the total number of missiles distributed to the 
ships between periods of combat may not exceed the number kept in the 
depot,(7.16) . 

Specialized constraints 

• In each scenario, missions with greater demands are assigned to ships with greater 
inventories (MAP constraints), (7.22) and (7.23). 

• The number of missiles allocated to ship i+1 does not exceed the number 
allocated to ship i, (symmetry-breaking constraints) (7.24).   

• The total number of missiles allocated in each period must exceed some minimum 
(total-allocation valid inequalities), (7.25)-(7.27). 

• Each ship is allocated at least some minimum number of missiles in period I 
(single-ship valid inequalities), (7.28).  

 

B. FFAM MATHEMATICAL DESCRIPTION 

Indices 

i I∈  ships 

k K∈  level (number) of missiles ( { }0, ,max iK v= … ) 

m M∈  missions 
Is ∈S  scenario s  in period I 

II ( )s s′∈S  scenario s′  in period II 

II ( )sS  Subset of period-II scenarios that may occur 
following period-I scenario s 

 

Parameters [units] 

sϕ  probability that period-I scenario s occurs 

|s sϕ ′  conditional probability that period-II scenario s′  occurs, given 
period-I scenario s occurs  

Ip  probability threshold for period I (probability that the realized 
scenario must be satisfied) 



97 

II
sp  probability threshold for period II, if scenario s occurred in period I 

msd  demand associated with mission m in scenario s [missiles] 

1c  
unit cost of procuring a missile and allocating it to a ship 
[$/missile]  

2c  unit cost of procuring a missile and storing it in the depot 
[$/missile] 

iv  discretionary lower bound on the number of missiles that may be 
allocated to ship i [missiles] 

iv  physical upper bound on the number of missiles that may be 
allocated to ship i [missiles] 

 

Auxiliary Parameters [units] 

Ib  minimum aggregate ship load-out required to satisfy the period-I 
scenarios [missiles] 

II
sb  minimum aggregate ship load-out required to satisfy the period-II 

scenarios following scenario s in period I [missiles] 

iv  period-I data-specific lower bound on the number of missiles that 
may be allocated to ship i [missiles] 

 

Decision Variables [units] 

I
ikx  1 if ship i has k missiles before the first combat period, and 0 

otherwise 

iv  number of missiles initially allocated to ship i [missiles] 

IIx  number of missiles allocated initially to the central depot [missiles] 

ikmsr′  1 if ship i has k missiles remaining following mission m in period-I 
scenario s, and 0 otherwise 

iksr  1 if ship i has k missiles left following period-I scenario s, and 0 
otherwise  

iksw  1 if ship i receives k missiles following period-I scenario s, and 0 
otherwise 

ikk s
x

′
 1 if ship i has exactly k′  missiles left after scenario s, and k′′  

missiles are added at the replenishment opportunity, and 0 otherwise 
II
iksx  1 if ship i is replenished to level k missiles following period-I 

scenario s, and 0 otherwise 



98 

sz  
1 if the demand vector in period-I scenario s is satisfied by the 
allocation plan, and 0 otherwise 

|s sz ′  
1 if the demand vector in period-II scenario s′ is satisfied by the 
allocation plan given that scenario s occurs in period I, and 0 
otherwise  

s
ikmu  1 if ship i has k missiles and is assigned mission m in period-I 

scenario s, and 0 otherwise 
|s s

ikmu ′  1 if ship i has k missiles and is assigned mission m in period-II 
scenario s′, following period-I scenario s, and 0 otherwise 

 
Formulation 
                I II

1 2min ik
i k

c k x c x+∑∑
u,x,y,z

 (7.1) 

                s.t. 

    Period I:    

       I,
ms

s
ikm s

m k d

u z i s
≥

≥ ∀ ∈∑ ∑ S  (7.2) 

              
I

I
s s

s

z pϕ
∈

≥∑
S

 (7.3) 

               I 1ik
k

x i= ∀∑   (7.4) 

              I I, ,s
ikm ik

m

u x i k s= ∀ ∈∑ S   (7.5) 

          I1 ,s
ikm

i k

u m s= ∀ ∈∑∑ S  (7.6) 

             I
, , , 1, ,

ms

s
i k d m ikmsu r i k m s+ ′= ∀ ≥ ∈S  (7.7) 

          I
, , , 0, ,

ms

s
i k m ikms

k d

u r i k m s′
′≤

′= ∀ = ∈∑ S  (7.8) 

               I, ,ikms iks
m

r r i k s′ = ∀ ∈∑ S   (7.9) 

                 I1 ,iks
k

r i s= ∀ ∈∑ S   (7.10) 

                      ( ) ( )I 0 , |ik i ix i k k v k v≡ ∀ < >∪  (7.11) 

    All variables binary. 

    Period II: 

                   I, , ,iksikk s
x r i k k K s

′
′≤ ∀ ∈ ∈S  (7.12) 



99 

                   I, , ,ik sikk s
x w i k k K s′′

′≤ ∀ ∈ ∈S  (7.13) 

              II I

|

, ,iksik k s
k k k k k

x x i k s
′ ′′

′ ′′ ′ ′′+ =

= ∀ ∈∑ ∑ S   (7.14) 

               I1 ,iks
k

w i s= ∀ ∈∑ S   (7.15) 

        II I
iks

i k

kw x s≤ ∀ ∈∑∑ S   (7.16) 

                    | I II
'| , , ( )

ms

s s
ikm s s

m k d

u z i s s s
′

′

≥
≥ ∀ ∈ ′∈∑ ∑ S S  (7.17) 

      
II

II I
| |

( )
s s s s s

s s

z p sϕ ′ ′
′∈

≥ ∀ ∈∑
S

S   (7.18) 

               | II I II, , , ( )s s
ikm iks

m

u x i k s s s′ = ∀ ∈ ′∈∑ S S  (7.19) 

          | I II1 , , ( )s s
ikm

i k

u m s s s′ = ∀ ∈ ′∈∑∑ S S  (7.20) 

                    ( ) ( )II I0 , | ,iks i ix i k k v k v s≡ ∀ < > ∈S∪  (7.21) 

  All variables binary except II +x ∈ .   

 Specialized constraints: 

                   I0 , , ,s
ikmu i k m i s= ∀ ≠ ∈S  (7.22) 

          | | I II
, 1 , 1, , ( )s s s s

ik m ik m
i k k i k k

u u k m n s s s′ ′
′ ′ +

′ ′≥ ≥

≥ ∀ ≤ − ∈ ′∈∑∑ ∑∑ S S  (7.23) 

               I I
1,

' '

1,ik i k
k k k k

x x i n k′ ′+
≥ ≥

≥ ∀ ≤ −∑ ∑                  (7.24) 

                       I
i ik

k

v k x i= ∀∑   (7.25) 

                  I.i
i

v b≥∑   (7.26) 

         II II I
iks s

i k

k x b s≥ ∀ ∈∑∑ S   (7.27) 

                     I 0 ,ik ix i k v≡ ∀ <   (7.28) 

With these restrictions on the data:  

                   1 1i iv v i n+≥ ∀ ≤ −   (7.29) 

                             I II
1, 1,ms m sd d m n s+≥ ∀ ≤ − ∀ ∈ ∪S S . (7.30) 



100 

This model contains some variables that can be substituted out, namely I
ikx , iksr , 

II
iksx , and iv .  Defining these variables in constraints (7.5), (7.9), (7.14), and (7.25) 

generates “branching constraints,” however, and branching on these variables accelerates 

the branch-and-bound solution process for the integer model; see Appleget and Wood 

[2000]. 



101 

APPENDIX B – SINGLE-PERIOD MIPS 

Following are the formulations of the two auxiliary models used to set some of 

the parameters used in RFFAM.  RFFAM-sp is a single-period model using the same 

assumptions as RFFAM.  RFFAM-lb is a relaxation of RFFAM-sp.  Both models use 

the same notation as RFFAM, and we provide it here for the reader’s convenience.  The 

equation numbers reference the first appearance of these constraints in Chapter II. 

Indices 

i I∈  ships 

k K∈  level (number) of missiles 

m M∈  missions 
Is ∈S  scenario s  in period I 

II ( )s s′∈S  scenario s′  in period II 

II ( )sS  Subset of period-II scenarios that may occur 
following period-I scenario s 

 

Parameters [units] 

msd  demand associated with mission m in scenario s [missiles] 

sϕ  probability that period-I scenario s occurs 

|s sϕ ′  conditional probability that period-II scenario s′ occurs, given that 
period-I scenario s occurs  

Ip  probability threshold for period I (probability that the realized 
scenario must be satisfied) 

II
sp  probability threshold for period II, if scenario s occurs in period I 

iv  discretionary lower bound on the number of missiles that may be 
allocated to ship i [missiles] 

iv  physical upper bound on the number of missiles that may be 
allocated to ship i [missiles] 

 

 

 



102 

Decision Variables [units] 

I
iv  number of missiles allocated to ship i in period I [missiles] 

I
ikx  1 if ship i has k missiles before the first combat period, and 0 

otherwise 
II
isv  number of missiles allocated to ship i in period II following period-I 

scenario s [missiles] 
II
iksx  1 if ship i is replenished to level k missiles following period-I 

scenario s, and 0 otherwise 
I
sz  1 if period-I scenario s is satisfied, and 0 otherwise 

I
isz  1 if ship i successfully covers its assigned mission in period-I 

scenario s , and 0 otherwise 
II
s sz ′  1 if period-II scenario s′ is successful following period-I scenario s, 

and 0 otherwise 
II
is sz ′  1 if ship i successfully covers its assigned mission in period-II 

scenario s′ following period-I scenario s, and 0 otherwise 
I
imsu  1 if ship i is assigned mission m in period-I scenario s, and 0 

otherwise 
II
ims su ′  1 if ship i is assigned mission m in period-II scenario s′ following 

period-I scenario s, and 0 otherwise 

 

A. RFFAM-sp 

                I

,
min i

i

v∑
u,v x,z

   (2.16) 

     s.t. 

                 I I
i ik

k

v k x i= ∀∑   (2.17) 

                  I I I I1
1 , ,

ms

is ik ms ims
k di

z k x d u i m s
v ≥

 
≤ − + ∀ ∈ 

 
∑ S  (2.18) 

                  I I I,s isz z i s≤ ∀ ∈S   (2.19) 

          
I

I
s s

s

z pϕ
∈

≥∑
S

  (2.20) 

             I 1ik
k

x i= ∀∑   (2.21) 

                  ( ) ( )I 0 , |ik i ix i k k v k v≡ ∀ < >∪  (2.29) 



103 

                  I I1 ,iisu i s= ∀ ∈S   (2.41) 

                  I0 , ,s
imu i m i s= ∀ ≠ ∈S   (2.42) 

             I I
1,

' '

1,ik i k
k k k k

x x i n k′ ′+
≥ ≥

≥ ∀ ≤ −∑ ∑  (2.43) 

All variables binary except I
iv . 

 

B. RFFAM-spII 

            
I

II

,
min is

is

v
∈
∑∑

u,x,v z
S

.  (2.50) 

             s.t. 
                         II II I,iks is

k

k x v i s= ∀ ∈∑ S   (2.31) 

                    II II II I II1
1 , , , ( )

ms

is s iks ms ims s
k di

z k x d u i m s s s
v

′

′ ′ ′
≥

 
≤ − + ∀ ∈ ∈ 

 
∑ S S  (2.32) 

                                 II II I II, , ( )s s is sz z i s s s′ ′≤ ∀ ∈ ′∈S S  (2.33) 

       
II

II II I
|

( )
s s s s s

s s

z p sϕ ′′
′∈

≥ ∀ ∈∑
S

S   (2.34) 

                  II I1 ,iks
k

x i s= ∀ ∈∑ S   (2.35) 

                II I II1 , , ( )ims s
m

u i s s s′ = ∀ ∈ ′∈∑ S S  (2.36) 

                II I II1 , , ( )ims s
i

u m s s s′ = ∀ ∈ ′∈∑ S S  (2.37) 

                        { }II I, 1, , ,is i i iv v v v i s∈ + ∀ ∈S…  (2.39) 

                       ( ) ( )II I0 , | ,iks i ix i k k v k v s≡ ∀ < ∨ > ∈S  (2.40) 

                       II I II1 , , ( )iis su i s s s′ = ∀ ∈ ′∈S S . (2.51) 

All variables binary except II
isv . 

 

 

 

 



104 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



105 

APPENDIX C – CASE SPECIFICATIONS 

Following are tables listing the case specifics for the RFFAM cases run in 

Chapter II.  In each case, I1s sϕ = ∀S , II
| 1s s sϕ ′ ′= ∀S , I I1 1p = − S , and 

II II1 1sp s= − ∀S .  The capacity bounds are set at 2iv i= ∀  and 8iv i= ∀ .  For each 

case, the length of the demand vectors equals the number of ships, and we use the 

following indexing scheme: Is ∈S , IIs′∈S . 

 

1 2 3 4 5 6

1

2

3

                                    

       6      5      6      8      7      6

       6      3      5      2      2      5

       1      1      3      0      0      4

s s s s s s

m

m

m

′ ′ ′

 

Table 7. Parameter Specifications for Case 2a.   

 

1 2 3 4 5 6 7 8

1

2

3

                                            

       3      7      6      5      8      7      8      5

       2      7      5      5      7      6      6      4

       2      3 

s s s s s s s s

m

m

m

′ ′ ′ ′

4

     2      4      5      5      4      3

       0      2      1      4      4      2      1      1m

 

Table 8. Parameter Specifications for Case 2b.   

 

1 2 3 4 5 6 7 8 9 10

1

2

                                                     

       6      5      8      6      8     7      8      5      7      7

       5      5      6      5      4     7     

s s s s s s s s s s

m

m

′ ′ ′ ′ ′

3

4

5

 7      4      2      5

       3      5      5      4      4     4      3      2      1      4

       1      3      3      3      2     2      2      2      0      2

       0      3      1      1  

m

m

m     2     1      2      2      0      1

 

Table 9. Parameter Specifications for Case 2c.   

 



106 

1 2 3 4 5 6 7 8 9 10 11 12

1

2

                                                     

       5      7      7      8      7      8      5      8      8      8      8      7

       5      7      7   

s s s s s s s s s s s s

m

m

′ ′ ′ ′ ′ ′

3

4

   7      5      7      4      7      7      8      5      6

       4      6      7      6      5      7      2      5      4      8      5      6

       4      4      6      6      5      6      2 

m

m

5

6

     1      1      7      3      4

       3      4      3      5      3      6      0      1      1      6      1      3

       0      3      0      0      0      5      0      1      0      5      

m

m 0      1

 

Table 10. Parameter Specifications for Case 2d.   

 

1 2 3 4 5 6 7 8 9 10

1

2

                                                     

       7      8      8      8      6      7      5      8      7      8

       4      7      7      7      5      7   

s s s s s s s s s s

m

m

′ ′ ′ ′ ′

3

4

5

   4      6      7      7

       4      7      5      6      1      7      3      5      5      6

       4      1      2      5      1      6      3      5      5      1

       0      1      0     

m

m

m  4      0      4      0      3      3      0

 

Table 11. Parameter Specifications for Case 2e.   

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

                                                                           

       8      8      7      7      7      8      7      8       7      8    

s s s s s s s s s s s s s s s s

m

′ ′ ′ ′ ′ ′ ′ ′

2

3

  8      8      8      7      7      5

       7      5      7      6      5      7      7      7       6      6      8      6      7      7      6      4

       7      4      6      6      3      6 

m

m

4

5

     4      5       5      5      7      4      6      6      5      3

       6      3      5      5      3      6      4      4       5      4      7      3      4      6      4      1

       5    

m

m

6

  2      4      5      3      6      3      4       5      4      6      3      3      6      3      1

       3      2      3      4      3      4      3      3       4      4      5      3      3   m

7

8

   2      2      1

       0      2      2      2      0      3      2      3       2      3      5      2      3      0      2      1

       0      0      1      0      0      1      2      2       

m

m 0      0      1      1      1      0      1      0

 

Table 12. Parameter Specifications for Case 2f.   

 

 

 

 



107 

APPENDIX D – CCNIM-e ALGORITHM 

In this appendix we discuss the viability of a simple enumerative algorithm to 

solve CCNIM-MAP for cost ratios 2 1 1c c ≤ .  Such an algorithm can overcome the no-

safety-stock effect and find a point in ( )X F , as discussed in Chapter IV.  We refer to this 

algorithm as CCNIM-e, where “e” stands for enumeration.  Note that the validity of 

CCNIM-e is based on results derived in Chapter V. 

We define an atomic operation as the procedure required to find an optimal 

allocation and depot inventory assuming that I II 1p p= =  and that 1 2c c= .  CCNIM-e 

consists of multiple repetitions of the atomic operation.  Let I
qS  denote the q th Ip -

feasible subset of period-I scenarios, and let IQ  denote the index set of all such subsets.  

For each scenario Is S∈ , there is a (potentially different) set of period-II scenarios 

( )IIS s  and probability requirement II
sp .  Let II

sQ  denote the index set of the IIp -feasible 

subsets of ( )IIS s .  The atomic operation is performed once for each combination of 

period-I subset I
qS  and period-II subsets corresponding to the scenarios I

qs S∈ .  The total 

number of operations N is given by  

 

I

I

II

1 q
s

s Sq

N
∈=

= Π∑
Q

Q , (7.31) 

which can obviously be quite large.  The costs of all solutions are compared, using the 

actual cost coefficients, to find the optimal solution. 

To assess the practicality of CCNIM-e, we need to obtain an estimate of the 

length of time required to solve the atomic operation, and calculate the number of times 

that operation must be repeated.  The atomic operation is a special case of CCNIM-

MAP, and can be solved by the following simple algorithm.  It is described here in 

pseudo-code, given in vector notation, with vectors always being n-dimensional columns.   

 



108 

(1) algorithm atomic 
(2) begin      

(3)     { }I I: max s
s

=v dd ;              //  period-I allocation that satisfies every scenario 

(4)     for : 1s =  to IS  do 

(5)         ( )I I
s s

+
= −r v d ;                     //  remaining inventories following scenario s 

(6)         ( ): SORT , 'descend 's s=r r ;      //  by inventory size (see Lemma 5) 

(7)         
( )

( ){ }II

II II
|maxs s s s

s S s

+

′
′∈

= −w dd r ;        //  number of missiles to supplement each 

ship 
(8)     end; 

(9)     { }II II: max T
s

s
x == 1 w ;                    //  depot inventory 

(10) end; 

 

The complexity of the atomic operation can be analyzed as follows.  The 

operation in line (3) requires one comparison for each element of each I
sdd , and so is 

( )IO n S .  The operation in line (5) performs one subtraction and one comparison for 

each ship, and is, therefore, ( )O n .  Sorting the vector in line (6) can be accomplished in 

( )O logn n  operations.  The number of operations required in line (7) is ( )( )IIO n S s .  

Because the loop of lines (4)-(8) is repeated IS  times, its complexity is given by 

( ){ }( )I

I IIO log max
s S

n S n S s
∈

 +  
, but in practical cases we expect the second term to 

dominate.  Finally, in line (9) we also require ( )IO n S  operations.  Therefore, we expect 

the computation time of the atomic operation to be governed, in practical cases, by  

( ){ }( )I

I IIO max
s S

n S S s
∈

.  Note that we do not consider the computation of the vectors 

I
sdd  and II

|s s′dd  as part of the atomic operation, because these can be computed once for 

each instance of CCNIM-e. 

We implement the atomic operation in MATLABTM version 6.5, and run it on an 

Intel 2.8 GHz Pentium IV personal computer.  In order to obtain a fair comparison to the 

computation time required by CCNIM-dc, we draw and solve random instances of 



109 

CCNIM-MAP according to the same demand distribution we use in Chapter V.  All 

demands for missiles are randomly generated, uniformly distributed integers on [0,8], and 

every scenario is equi-probable, with probabilities I I I1s S s Sϕ ϕ≡ = ∀ ∈  and 

( ) ( )II II II
| 1s s s S s s S sϕ ϕ ′ ′≡ = ∀ ∈ .  We vary the value of ( )I II, , andn S S s  between 3 

and 30 in steps of size 3, for a total of 1000 observations.  Because the timekeeping 

function in Matlab is inaccurate at measuring very short periods, we measure the time 

required to solve each instance 1000 times in succession.  We derive the following 

regression function for the computation time of a single atomic operation, measured in 

micro-seconds. 

     I II I II I II23.13 1.45 18.95 1.48 0.1 0.08 0.06aot n S S n S n S n S S= − + + + + − +   (7.32) 

This model includes every interaction term except for I IIS S , and appears to fit the data 

best, achieving 2R 0.9987=  and 122,920F = . 

The estimate the computation of the enumerative algorithm, we simply need to 

multiply the computation time of the atomic operation of the correct size by the number 

of such operations required.  When the scenarios are equi-probable and 

( )II II IS s S s S= ∀ ∈ , the number of p-feasible subsets from a specific set is given by   

 
S

S p

 
=      

Q . (7.33) 

Therefore, the number of times the atomic operation must be repeated to solve 

CCNIM-MAP is given by  

 

I I

I II

I I II II

S p

S S
N

S p S p

 
   

  =
          

. (7.34) 

Although the atomic operation requires less than a millisecond to solve in 

problems of up to 20 ships and 20 scenarios in each period, it is evident that this 

procedure can only be used if the probability threshold is set such that every period-II 

scenario must be satisfied.  Otherwise, the number of iterations is too large to solve in 

practical time.  For example, in a case involving 10 scenarios in each period, and 



110 

probability threshold of 0.9, we obtain 1010N =  and 229.5 secaot µ= .  The time required 

to solve that case using the enumeration technique is on the order of 26 days of 

computation. 

Obviously we can do much better by identifying scenarios which are never 

candidates to be dropped, or scenarios which may be dropped every time.  KPPs MSP 

algorithm, which we integrate into CCNIM-dc, uses these principles to avoid 

enumerating most of the period-II subsets.  Furthermore, CCNIM-dc does not enumerate 

the Ip -feasible subsets at all; rather, it uses theoretical results based on PEPs to minimize 

the number of period-I candidate allocations we must explore.  

 



111 

APPENDIX E – CCNIM-dc ALGORITHM 

Following is a pseudo-code representation of CCNIM-dc.  When describing a 

particular function, the variables in square brackets represent the output of the function 

and the variables in parentheses following the function name represent the input to the 

function.  All vector notation refers to n-dimensional vectors of ship properties, and all 

operations are component-wise.  Functions are listed in order of appearance.  Variables 

are local. 

 
 

Algorithm IIˆ ˆ, ,cost  A X   =  CCNIM-dc 

 
DATA 

{ }1,...,i n∈          ships 

{ }I

I
1,..., S

S s s=   period-I scenarios. 

{ }II

II
1,..., S

S s s′ ′=  period-II scenarios. 

I
isd  demand i  in period I scenario s.  I I

1, 1is i sd d i n+≥ ∀ ≤ −  
II
isd ′  demand i  in period II scenario s′ .  II II

1, 1is i sd d i n′ ′+≥ ∀ ≤ −  
Ip   probability threshold for period I. 
II
sp  probability threshold for period II, following period-I scenario s. 

sϕ   probability of period-I scenario s. 

|s sϕ ′  conditional probability of period-II scenario s′  on period-I scenario s. 

iv  physical upper bound on missile capacity for ship i.  iv v i= ∀  

iv  discretionary lower bound on missile capacity for ship i. 

1 1i iv v i n+≥ ∀ ≤ −  

1c  cost of allocating a missile to a ship. 

2c  cost of allocating a missile to the depot. 

 
OUTPUT 
cost cost of the proposed procurement plan 
Â   set of potential period-I allocations 

IIX̂   set of accompanying depot inventories 
 

 



112 

begin 
    { }I I: s= dD ∪ ;                                                //  set of period-I scenarios 

    { }II II: s′= dD ∪ ;                                               //  set of period-II scenarios 

    for : 1s =  to IS  do 

        { }I I: max ,s s=dd d v ;                                //  scenario requirements 

    end; 
    I I: s= ddDD ∪ ;                                             

    ( )I I I I, getPEPbounds , ,s pϕ  = α β DD     //  bounds on minimum allocation vector 

    if 1 2c c≥  then 

        :=A  genAll ( )I I I I, , , ,s s pϕ ∀ α βDD     //  generate period-I allocations 

        ( )II I II II II: depotWeight , , , , ,spϕ= vX A D D ;  //  and resulting depot inventory for each 

        for : 1j =  to A  do 

            I II
1 2: T

j j jcost c c= +1 v X ; 

        end; 

        { }ˆ : argmin cos jj t= ;                       //  possibly multiple solutions 

        ˆ
ˆ :

j
= ∈vA A ;        II II II

ˆ
ˆ : ;

j
x= ∈X X  

    else 
        := vC ;                                         //  initialize candidate allocations  
        : n=δ ;                                         //  initialize index of successor 

        ( )II I II II II: depotWeight , , , , ,d sx pϕ= vC D D ;     //  calculate resulting depot inventory 

        while ≠ ∅C  

            [ ],CN δN :=prevLevel ( )I I I, , , , ,s pϕβC δ DD ; 

            ( )II I II II II: depotWeight , , , , spϕ=X CN D D ; 

            for :j = CN  to 1 by -1 do 

                if II II
j dx>X  then 

                    { }: \ j= uCN CN ;                         //  delete allocations that increase depot 

                end; 
            end; 
            if == ∅CN  then 
                ˆ :=A C ;                                 //  record minimum period-I allocations 
            end; 
            :=C CN ; 
        end; 
        II

1 1 2
ˆ: T

dcost c c x= +1 A ;    II IIˆ
dx=X ; 

    end; 
end; 



113 

function [ ] ( ), getPEPbounds , , ,s s p nϕ= ∀α β D  

DESCRIPTION: 
The function calculates the lower and upper bounds on the PEPs of the 

distribution of D .  The lower bounds are calculated through the marginal distribution, and 
the upper bounds from the largest value possible.  
INPUT: 
    D        set of scenarios 
    sϕ      scenario probability 

    p       probability threshold 
    n        number of ships 
OUTPUT: 
    α      vector of PEP lower bounds 
    β      vector of PEP upper bounds  
 
begin 
    for : 1i =  to n  do 
        let iπ  be a permutation of the scenarios such that ( ) ( )

I I

, 1 ,
...i ii i

d dπ π≥ ≥
D

; 

        ( )
( )

: argmax i

i

n
i

s
t s t

t pπ
π

ϕ
=

= ≥∑ ;       //  permuted index of threshold-passing  scenario 

        : ii it
dα = ;                              //  PEP lower bound based on marginal distribution 

        { }: maxi is
s

dβ = ;                   //  PEP upper bound – highest demand possible 

    end; 
end; 



114 

function [ ]A = genAll ( )I I I I, , , ,s s pϕ ∀ α βDD  

DESCRIPTION: 
This function generates all the period I allocations that need to initially be 

considered.  By theorem 5.1, if 1 2c c≥ , the candidate allocations are the PEPs of the 

distribution of I
sdd , the allocation vector required for period I.  Otherwise, we load the 

ships to capacity so we can calculate the minimum depot. 
INPUT: 
    IDD     period-I scenario requirements 
    sϕ     period-I scenario probabilities 

    Ip     period-I probability threshold 

    Iα      ship inventory lower bounds 
    Iβ      ship capacity upper bounds 
OUTPUT: 
    A      set of period-I allocation vectors 
      
begin; 
    I:  =  αC ;                                    //  initialize set of candidate PEPs 

    := ∅A ;                                       //  initialize set of known PEPs 
    : 1=δ ;                                         //  initialize set of predecessor indices 
    while ≠ ∅C  
        for : 1j =  to C  do                 //  check p-feasibility of each candidate 

            j=u C ; 

            ( )I I: checkPF , , ,smk s pϕ= ∀u DD ; 

            if 1mk ==  then 
                { }:= ∪ uA A ;                    //  include in set of PEPs 

                { }: \= uC C ;                      //  remove from set of candidates 

            end; 
        end; 
        if ≠ ∅C  then 

            [ ],C δ :=NextGen_PI ( )I, , , , nβC δ A ;           //  generate next set of candidates 

        end; 
    end; 
end; 
 



115 

 function [bool]:=checkPF ( ), , ,s s pϕ ∀v D  

DESCRIPTION: 
The function calculates the cumulative probability of scenarios which are 

successfully covered by v , and checks whether the probability threshold is exceeded. 
INPUT: 
    v        candidate allocation vector 
    D        set of scenarios 
    sϕ      scenario probability 

    p       probability threshold 
OUTPUT: 
    bool   is set to 1 if v  is p-feasible 
 
begin 
    bool:=0; 
    for : 1s =  to D  do 

        : 0sz = ; 

        if s≥v d  then 

            : 1sz = ; 

        end; 
    end; 
    if s sz pϕ ≥∑  then 

        bool:=1; 
    end; 
end; 
 



116 

function [ ],CN δN :=NextGen_PI ( ), , , , nβC δ A  

DESCRIPTION: 
This function generates the next generation of candidate PEPs.  Lower bounds are 

based on the marginal distribution of each ship’s demands.  This enumeration scheme 
follows that described by Beraldi and Ruszczyński [2002], with additional conditions that 
guarantee the candidates are monotonic and the upper bound is maintained.   
INPUT: 
    C        set of failed candidates 
    δ        their predecessor indices 
    A       current known PEPs 
    β        PEP upper bounds 
    n        number of ships 
OUTPUT: 
    CN     next set of candidate PEPs 
    δN     their predecessor indices 
 
begin; 
    := ∅CN ;                              //  initialize set of candidates for next generation 
    := ∅δN ;                              //  initialize set of predecessor indicators 
    for : 1j =  to C  do 

        for : jj δ′ =  to n  do 

            : j=u C ; 

            : 1j ju u′ ′= + ;                       //  increase one component only 

            if ( )1j iu u i j′ ′≤ ∀ ≤ −  and ( )j ju β′ ′≤  then 

                { }:= ∪ uCN CN ;             //  if conditions are met, add to list of next generation 

                { }: j′= ∪δN δN ;            //  and store its predecessor index 

            end; 
        end; 
    end; 
    for : 1j =  to CN  do 

        : j=u CN ; 

        : 0jmk = ;                              //  initialize domination indicator 

        : 1j′ = ; 

        while j′ ≤ A  

            j′=v A ; 

            if ≥u v  then               //  compare each candidate to list of known PEPs 
                : 1jmk = ;                  //  record those which are dominated by any PEP 

                : 1j′ = +A ;              // exit internal loop 

            else 



117 

                : 1j j′ ′= + ;              // index next known PEP 
            end; 
        end; 
    end; 
    if 1mk ==  then 
        { }: \= uCN CN ;             //  delete the dominated candidate from the list 

        { }: j′=δN δN\ ;            //  and its predecessor index 

    end; 
end; 
 



118 

function II  X  = ( )I II II II
|depotWeight , , , , , ,s s ss s pϕ ′ ′∀ vA D D  

DESCRIPTION: 
 This function calculates the remaining inventories on each ship, reorders the 
remainders, and calculates the number of additional missiles each ship needs to 
successfully cover each period-II scenario.  It then calls minPEP() to calculate the 
minimum period-II p-efficient point on the distribution of | ,s s j′dd .  minPEP() is a generic 

name, and actually, we call either the function MSPA() or minPEPenum() to obtain the 
minimum PEP. 
INPUT: 
    A     set of possible period-I allocations 
    ID     set of period-I scenarios 
    IID    set of period-II scenarios 
    II

|s sϕ ′   conditional probabilities of period-II scenarios 

    II
sp    probability threshold for period II, following period-I scenario s 

    v       ship’s minimum inventories 
OUTPUT: 
    IIX    set of depot inventories calculated for each period-I allocation 
 
 
begin  
    for : 1j =  to A  do 

        for : 1s =  to ID  do 

            ( )I I
sj j s

+
= −r v d ;                                            //  remaining inventory  

            ( ): SORT , 'descend 'sj sj
i

=r r ;                          //  see theorem 5.2 

            for : 1s′ =  to IID  do 

                { }( )II II
| , max ,s s j s sj

+

′ ′= −dd d v r ;                //  period-II requirements from the depot 

            end; 

            { }
II

|

II I
| ,

| 0

:
s s

sj s s j
s ϕ ′

′
′ >

= ddDD ∪ ;                                       //  set of period-II requirements 

            ( )II II II II
|: minPEP , 0,sj sj s s sw pϕ ′= >DD ;       //  optimal requirements given period-I  

                                                                              //   scenario s and allocation j 
        end; 
        { }II II: maxj sj

s
x w= ;                               //  the depot required for allocation j 

    end; 

    { }II II
jx=X ∪ ;                                      //  set of depot inventories 

end; 



119 

function [ ]k = minPEPenum ( )D, ,s s pϕ ∀  

DESCRIPTION: 
This function generates the value of the minimum level PEP for period II 

requirements through the PEP enumeration technique described in Beraldi and 
Ruszczyński [2002]. 
INPUT: 
    D      period-I scenario demands 
    sϕ     period-I scenario probabilities 

    p     period-I probability threshold 
OUTPUT: 
    k      sum of elements of the minimum PEP 
 
begin; 
    [ ] ( ), getPEPbounds , ,s pϕ=α β D  

    : Tk = 1 α ;                                     //  initial level 
    [ ]:= αC ;                                      //  initialize set of candidate PEPs 

    := ∅A ;                                       //  initialize set of known PEPs 
    : 1=δ ;                                         //  initialize set of predecessor indices 
    while = ∅A  
        for : 1j =  to C  do                 //  check p-feasibility of each candidate 

            j=u C ; 

            ( ): checkPF , , ,smk s pϕ= ∀u D ; 

            if 1mk ==  then 
                { }:= ∪ uA A ;                    //  include in set of PEPs 

            end; 
        end; 
        if = ∅A  then 
            [ ],C δ :=NextGen_PII ( ), , , βC δ A ;           //  generate next set of candidates 

        end; 
    end; 
end; 

 



120 

function [ ]k = MSPA ( )D, ,s s pϕ ∀  

DESCRIPTION: 
This function generates the value of the minimum level PEP for period II 

requirements by using the MSP algorithm developed by Kress et al. [2004].  The minimal 
p-feasible subset is created in a process of elimination.  In the preliminary phase, 
scenarios that require too many missiles in total to be included in the minimal p-feasible 
subset are eliminated.  In the second stage, p-feasible subsets are enumerated, and the one 
requiring  a minimum number of missiles is selected. 
INPUT: 
    D      period-I scenario demands 
    sϕ     period-I scenario probabilities 

    p      period-I probability threshold 
OUTPUT: 
    k      sum of elements of the minimum PEP 
 
begin; 
    for : 1s =  to D  do 

        : T
s sσ = 1 d ; 

    end; 
    let σπ  be a permutation of the scenarios such that ( ) ( )1σ σπ πσ σ≥ ≥

D
… ; 

    ( )
( )

: argmax
n

s
t s t

t p
σ

σ

σ π
π

ϕ
=

= ≥∑ ;       //  permuted index of threshold-passing  scenario 

    for : 1i =  to n  do 
        :i itd

σ
α = ;                                  //  PEP lower bound based on marginal distribution 

        ( ){ }: |S s s tσ
σ σπ= ≥ ; 

        { }: maxi is
s S

d
σ

β
∈

= ;                        //  nominal allocation 

    end; 
    : Tk = 1 β ;                                      //  number of missiles in nominal allocation 

    { }: s
s Sσ∈

= dB ∪ ;                              //  potentially optimal p-feasible scenarios 

    : s
s S

p
σ

ϕ
∉

= ∑D\B ;                             //  probability of eliminated scenarios 

    :Ψ = ∅ ;                                       //  initialize suspect scenarios 
    for : 1i =  to n  do 
        let iπ  be a permutation of the scenarios s Sσ∈  such that ( ) ( )

I I

, 1 ,
...i ii i

d dπ π≥ ≥
B

; 

        ( )
( )

( )
1

: argmax 1i

i

t
i

s
t s

t p pπ
π

ϕ
=

= ≤ − +∑ D\B ;  

        if it ≠ ∅  then 

            ( ){ }: | i is s tπΨ = Ψ ∪ ≤ ; 



121 

        end; 
    end; 
    if Ψ ≠ ∅  then 

        ( ){ }: min 1 min ,s
s

p pκ ϕ
∈Ψ

 = − + Ψ D\B ;   // number of scenarios we may eliminate 

        for : 1j =  to κ  do 

            let jΦ  be the set of all subsets size j of scenarios from Ψ   ; 
        end; 

        { }: jΦ = Φ∪ ;                                             //  set of all possibly eliminated subsets 

        
1

:
j

cm
j

κ

=

 Ψ 
=  

 
∑ ;                                         //  cardinality of Φ  

        for : 1j =  to cm  do 

            if ( )1
j

s
s

p pϕ
∈Φ

≤ − +∑ D\B  then              //  if the subset can be eliminated 

                { }
\

: max
j

is
s

i

k d
∈ Φ

′ =∑
B

;                 //  calculate allocation cost of remaining scenarios 

                if k k′ <  then 
                    :k k′= ;                                         // replace if improving 
                end; 
            end; 
        end; 
    end; 
end;



122 

function [ ],CN δN :=NextGen_PII ( ), , , nβC δ  

DESCRIPTION: 
This function generates the next generation of candidate PEPs in period II.  It 

differs from the period-I generation in the fact that there is no monotonicity condition.  
We also need not eliminate dominated candidates, because this function is only used until 
the first PEP is found. 
INPUT: 
    C        set of failed candidates 
    δ        their predecessor indices 
    β        PEP upper bounds 
    n        number of ships 
OUTPUT: 
    CN     next set of candidate PEPs 
    δN     their predecessor indices 
 
begin; 
    := ∅CN ;                                            //  initialize set of candidates for next generation 
    := ∅δN ;                                            //  initialize set of predecessor indicators 
    for : 1j =  to C  do 

        for : jj δ′ =  to n  do 

            : j=u C ; 

            : 1j ju u′ ′= + ;                       //  increase one component only 

            if ( )j ju β′ ′≤  then 

                { }:= ∪ uCN CN ;             //  if conditions are met, add to list of next generation 

                { }: j′= ∪δN δN ;            //  and store its predecessor index 

            end; 
        end; 
    end; 
    if 1mk ==  then 
        { }: \= uCN CN ;             //  delete the dominated candidate from the list 

        { }: j′=δN δN\ ;            //  and its predecessor index 

    end; 
end; 



123 

function [ ],CN δN :=prevLevel ( )I I I, , , , , ,s s p nϕ ∀βC δ DD  

DESCRIPTION: 
This function generates previous level of candidate period-I allocations.  This 

enumeration scheme follows the reverse PEP enumeration described by Beraldi and 
Ruszczyński [2002].  Fewer points are enumerated because of the monotonicity 
requirement.  The PEP upper bounds are used as a quick method to verify p-feasibility.   
INPUT: 
    C        set of current known allocations 
    δ        their predecessor indices 
    Iβ       PEP upper bounds 

    IDD    Set of period-I required ship inventories 
    sϕ      period-I scenario probabilities 

    Ip      period-I probability threshold 
    n        number of ships 
OUTPUT: 
    CN     next set of candidate allocations 
    δN     their predecessor indices 
 
begin; 
    := ∅CN ;                                     //  initialize set of candidates for next generation 
    := ∅δN ;                                     //  initialize set of predecessor indicators 
    for : 1j =  to C  do 

        for { }: max 1,1jj′ = −δ  to jδ  do 

            : j=u C ; 

            : 1j ju u′ ′= − ;                        //  reduce one component only 

            if ( )1 1j j ju u u′ ′ ′− +≥ ≥  then   //  verify monotonicity of allocation is maintained 

                : 0mk = ; 
                if I≥u β  then 
                    : 1mk = ; 
                else 
                    ( )I I: checkPF , , ,smk s pϕ= ∀u DD ; 

                end; 
                if 1mk ==  then 
                    { }:= ∪ uCN CN ;         //  if conditions are met, add to list of candidates 

                    { }: j′= ∪δN δN ;            //  and store its predecessor index 

                end; 
            end; 
        end; 
    end; 
end; 



124 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 



125 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 

3. Professor R. Kevin Wood, Code OR/Wd 
Department of Operations research 
Naval Postgraduate School 
Monterey, California  
 

4. Professor Moshe Kress, Code OR 
Department of Operations Research 
Naval Postgraduate School 
Monterey, California 
 

5. Professor Andrzej Ruszczyński,  
Department of Management Science 
Rutgers University 
Piscataway, New Jersey  

 
6. Ittai Avital  

Israel Navy 
Tel Aviv, Israel 
 

 
 


